Remark on the bounded non-self-adjoint friedrichs model

##plugins.themes.bootstrap3.article.main##

Тулкин Расулов

Аннотация

In the present paper we consider the bounded, but not-self-adjoint Friedrichs model A with rank one perturbation. We show the for any positive integer number m there exist the parameter functions of the operator A such that this operator has at least
m eigenvalues.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Расулов, Т. (2022). Remark on the bounded non-self-adjoint friedrichs model. Центр Научных Публикаций (buxdu.Uz), 26(26). извлечено от https://journal.buxdu.uz/index.php/journals_buxdu/article/view/8589
Раздел
Статьи buxdu.uz

Библиографические ссылки

K.O. Friedrichs. Uber die Spectralzerlegung einee Integral operators. Math. Ann., –Berlin,

, –V.115, –№1, –P. 249-272.

K.O. Friedrichs. On the perturbation of continuous spectra. Comm. Pure Appl. Math., New

York, 1948, –V.1, –№4, –P. 361-406.

Zh.I. Abdullaev and S.N. Lakaev. On the Spectral Properties of the Matrix-Valued Friedrichs

Model. Many-particle Hamiltonians: spectra and scattering. Adv. Sov. Math., AMS., Providence

RI, 5 (1991), pp. 1–37.

I.A. Ikromov and F. Sharipov. On the Discrete Spectrum of the Nonanalytic Matrix-Valued

Friedrichs Model. Func. Anal. Appl., 32 (1998), no. 1, pp. 49–51.

M.I. Muminov. Expression for the Number of Eigenvalues of a Friedrichs Model. Math. Notes,

:1 (2007), pp. 67–74.

Наиболее читаемые статьи этого автора (авторов)

1 2 3 4 > >>