Structure of the numerical range of a Friedrichs model: 1D case with rank two perturbation

Main Article Content

Тулкин Расулов

Abstract

The paper considers a limited and self-contained joint Friedrichs model and a 1-dimensional point analysis in which color is excited by two.

Article Details

How to Cite
Расулов, Т. (2021). Structure of the numerical range of a Friedrichs model: 1D case with rank two perturbation. Center for Scientific Publications (buxdu.Uz), 6(6). Retrieved from http://journal.buxdu.uz/index.php/journals_buxdu/article/view/3163
Section
Статьи buxdu.uz

References

Gustafson K. E., Rao D. K. M. Numerical range. Universitext. Springer, New York, 1997. The field of

values of linear operators and matrices.

Kato T. Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin, 1995.

Toeplitz O. Das algebraische Analogon zu einem Satze von Fejer. Math. Z., 2 (1-2), 1918, pp. 187–197.

Hausdorff F. Der Wertvorrat einer Bilinearform. Math. Z., 3 (1), 1919, pp. 314–316.

Wintner A. Zur Theorie der beschrankten Bilinearformen. Math. Z., 30 (1), 1929, pp. 228–281.

Gau H.-L., Li C.-K., Poon Y.-T., Sze N.-S. Higher rank numerical ranges of normal matrices. SIAM J.

Matrix Anal. Appl., 32, 2011, pp. 23–43.

Kuzma B., Li C.-K., Rodman L. Tracial numerical range and linear dependence of operators. Electronic J.

Linear Algebra, 22, 2011, pp. 22–52.

Langer H., Markus A. S., Matsaev V. I., Tretter C. A new concept for block operator matrices: the quadratic

numerical range. Linear Algebra Appl., 330 (1-3), 2001, pp. 89–112.

Tretter C., Wagenhofer M. The block numerical range of an n × n block operator matrix. SIAM J. Matrix

Anal. Appl., 24 (4), 2003, pp. 1003–1017.

Most read articles by the same author(s)

1 2 3 4 > >>