Structure of the numerical range of a Friedrichs model: 1D case with rank two perturbation

##plugins.themes.bootstrap3.article.main##

Тулкин Расулов

Аннотация

The paper considers a limited and self-contained joint Friedrichs model and a 1-dimensional point analysis in which color is excited by two.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Расулов, Т. (2021). Structure of the numerical range of a Friedrichs model: 1D case with rank two perturbation. Центр Научных Публикаций (buxdu.Uz), 6(6). извлечено от http://journal.buxdu.uz/index.php/journals_buxdu/article/view/3163
Раздел
Статьи buxdu.uz

Библиографические ссылки

Gustafson K. E., Rao D. K. M. Numerical range. Universitext. Springer, New York, 1997. The field of

values of linear operators and matrices.

Kato T. Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin, 1995.

Toeplitz O. Das algebraische Analogon zu einem Satze von Fejer. Math. Z., 2 (1-2), 1918, pp. 187–197.

Hausdorff F. Der Wertvorrat einer Bilinearform. Math. Z., 3 (1), 1919, pp. 314–316.

Wintner A. Zur Theorie der beschrankten Bilinearformen. Math. Z., 30 (1), 1929, pp. 228–281.

Gau H.-L., Li C.-K., Poon Y.-T., Sze N.-S. Higher rank numerical ranges of normal matrices. SIAM J.

Matrix Anal. Appl., 32, 2011, pp. 23–43.

Kuzma B., Li C.-K., Rodman L. Tracial numerical range and linear dependence of operators. Electronic J.

Linear Algebra, 22, 2011, pp. 22–52.

Langer H., Markus A. S., Matsaev V. I., Tretter C. A new concept for block operator matrices: the quadratic

numerical range. Linear Algebra Appl., 330 (1-3), 2001, pp. 89–112.

Tretter C., Wagenhofer M. The block numerical range of an n × n block operator matrix. SIAM J. Matrix

Anal. Appl., 24 (4), 2003, pp. 1003–1017.

Наиболее читаемые статьи этого автора (авторов)

1 2 3 4 > >>