Structure of the numerical range of a Friedrichs model: 1D case with rank two perturbation
##plugins.themes.bootstrap3.article.main##
Аннотация
The paper considers a limited and self-contained joint Friedrichs model and a 1-dimensional point analysis in which color is excited by two.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
Gustafson K. E., Rao D. K. M. Numerical range. Universitext. Springer, New York, 1997. The field of
values of linear operators and matrices.
Kato T. Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin, 1995.
Toeplitz O. Das algebraische Analogon zu einem Satze von Fejer. Math. Z., 2 (1-2), 1918, pp. 187–197.
Hausdorff F. Der Wertvorrat einer Bilinearform. Math. Z., 3 (1), 1919, pp. 314–316.
Wintner A. Zur Theorie der beschrankten Bilinearformen. Math. Z., 30 (1), 1929, pp. 228–281.
Gau H.-L., Li C.-K., Poon Y.-T., Sze N.-S. Higher rank numerical ranges of normal matrices. SIAM J.
Matrix Anal. Appl., 32, 2011, pp. 23–43.
Kuzma B., Li C.-K., Rodman L. Tracial numerical range and linear dependence of operators. Electronic J.
Linear Algebra, 22, 2011, pp. 22–52.
Langer H., Markus A. S., Matsaev V. I., Tretter C. A new concept for block operator matrices: the quadratic
numerical range. Linear Algebra Appl., 330 (1-3), 2001, pp. 89–112.
Tretter C., Wagenhofer M. The block numerical range of an n × n block operator matrix. SIAM J. Matrix
Anal. Appl., 24 (4), 2003, pp. 1003–1017.