

ЎЗБЕКИСТОН РЕСПУБЛИКАСИ ОЛИЙ ВА ЎРТА МАХСУС ТАЪЛИМ ВАЗИРЛИГИ

МИРЗО УЛУҒБЕК НОМИДАГИ ЎЗБЕКИСТОН МИЛЛИЙ УНИВЕРСИТЕТИ ЎЗБЕКИСТОН РЕСПУБЛИКАСИ ФАНЛАР АКАДЕМИЯСИ "ШЎРТАН ГАЗ КИМЁ МАЖМУАСИ" МЧЖ

КИМЁНИНГ РИВОЖИДА ФУНДАМЕНТАЛ, АМАЛИЙ ТАДҚИҚОТЛАР ВА УЛАРНИНГ ИСТИҚБОЛЛАРИ

Республика илмий-амалий анжумани материаллари

22-23сентябрь

Тошкент-2022

ЎЗБЕКИСТОН РЕСПУБЛИКАСИ ОЛИЙ ВА ЎРТА МАХСУС ТАЪЛИМ ВАЗИРЛИГИ

МИРЗО УЛУҒБЕК НОМИДАГИ ЎЗБЕКИСТОН МИЛЛИЙ УНИВЕРСИТЕТИ

Профессори, кимё фанлари доктори АБДУШУКУРОВ АНВАР КАБИРОВИЧ

таваллудининг 80 йиллигига бағишланган КИМЁНИНГ РИВОЖИДА ФУНДАМЕНТАЛ, АМАЛИЙ ТАДҚИҚОТЛАР ВА УЛАРНИНГ ИСТИҚБОЛЛАРИ

Мавзусидаги Республика илмий-амалий анжумани

2022 йил 22-23сентябрь

ОПТИЧЕСКИЕ СВОЙСТВА β-ДИКАРБОНИЛЬНЫХ ПРОИЗВОДНЫХ ФЕРРОЦЕНА

Д.х.н., проф. Умаров Б.Б., PhD, доц. Сулаймонова З.А.

Бухарский государственный университет

ферроценоилацетона $(\Phi A,$ (1-Ферроценилбутандион-1,3). Синтез Ha первом этапе синтеза нами была проведена реакция конденсации моноацетилферроцена (МАФ) с этилацетатом. Для осуществления данной реакции к раствору ацетилферроцена постоянно перемешивая магнитной мешалкой небольшими порциями добавляли металлический натрий. Реакционную смесь выдерживали в течение 5-6 ч при температуре 40-45°C. Полученный осадок натриевой соли ферроценоилацетона внесли в делительную воронку, охладили со льдом, добавили эфир и обработали 10%-ным раствором HCl. Продукт разложения сушили с MgSO₄. После удаления растворителя при охлаждении из маточника выпадает черная масса, которую обработали двухкратно этиловым эфиром, в результате чего выпадает красный порошкообразный осадок. Полученный осадок отфильтровали, промывали водой, высушивали и перекристаллизовали из гексана. Получили темно-коричневые кристаллы с выходом 82% и Т.пл. 95-96,5°C.

Взаимодействием спиртовых растворов эквимолярных количеств β -дикарбонильного соединения ферроценоилацетона со спиртовыми растворами гидразидов уксусной, бензойной, *орто-*, *мета-*нитробензойной, 5-бромсалициловой, фенилуксусной кислот и тиосемикарбазидом синтезированы новые лиганды H_2L^1 - H_2L^7 , соответственно, последующей схеме реакции:

X=O: R=CH₃ (H₂L¹), C₆H₅ (H₂L²), M-NO₂-C₆H₄ (H₂L³), n-NO₂-C₆H₄ (H₂L⁴), 2-OH-5-Br-C₆H₃ (H₂L⁵), C₆H₅CH₂ (H₂L⁶). X=S, R=NH₂, (H₂L⁷).

Лля выявления оптических свойств синтезированных соединений, нами сняты электронные спектры поглощения для всех полученных производных ферроцена в этаноле. Из электронных спектров поглощения определены положения максимумов поглощения (λ^{abs}_{max}) и значение начала поглошения (λ^{abs}_{onset}), а также значение кооффициента молярной экстинкции (є) и рассчитаны на основе начала поглощения зоны (E_g^{opt}) (табл.1). В спектрах ширины запрещенной длинноволновый максимум в области 417-485 нм связан с внутримолекулярным переносом заряда И соответствует $\pi\!\!-\!\!\pi^*$ переходам происходящих циклопентадиенильной части молекул. В спектре моноацетилферроцена (МАФ) коротковолновый максимум 256 нм меняется в ферроценоилацетоне (ФА), максимумы поглощения при 450 (ε =2,94) и 536 (ε =3,21) нм показывают гипохромные эффекты [417 нм $(\epsilon=1,79)$ и 459 нм $(\epsilon=1,91)$]. В спектре лигандов H_2L^1 - H_2L^7 изчезается длинноволновый максимум поглощения в области 310-536 нм. В спектре поглощения лиганда H_2L^5 ,содержащего ауксохромы OH и Br, происходит ожидаемое увеличение интенсивности поглощения, $\lambda^{abs}_{max} = 228$ нм ($\epsilon = 3,42$), тогда как в спектре H_2L^7 эта полоса поглощения претерпевает сдвиг в длинноволновую область (230 нм), а интенсивность поглощения снижается до $\epsilon = 2.7$.

На основе приобретенных значений красной границы области поглощения, рассчитанные нами значения $E_g^{\ opt}$ (табл.1) показывают, что исследованные в этой работе соединений можно отнести к узкозонным полупроводникам, для которых ширина запрещенной зоны составляет меньше или же около $2\ {
m p}$ B.

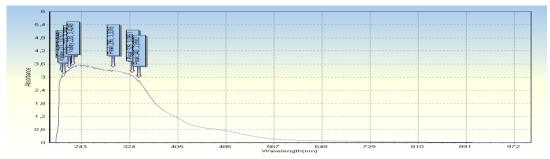


Рис. 1. ЭСП лиганда H_2L^5 в этаноле.

Введение заместителей в бензольное ядро вызывает батохромное или же гипсохромное смещение сответствующих полос поглощения совместно с гиперхромным эффектом. Коротковолновые максимумы поглощения в спектрах лигандов H_2L^2 (бензоилгидразон ферроценоилацетона), H_2L^3 (нитробензоилгидразон ферроценоилацетона) и H_2L^5 (гидразон 5-бромсалициловый кислоты) появляются при 243 нм, 228, 329, 340 и 486 нм соответственно. В спектрах поглощения лигандов H_2L^2 и H_2L^5 батохромное смещение бензольной полосы связано с $\pi \rightarrow \pi^*$ переходами в бензольного кольца.

Таблица 1. Оптические характеристики МАФ, ФА и лигандов, на основе данных электронных спектров поглощения (растворитель-абсолютный этанол, концентрация 10⁻⁵ M)

Соединение	λ ^{abs} _{max} , HM	λ ^{abs} onset,	Eg opt, 3B	$\varepsilon, \underline{\pi} \cdot \underline{\text{моль}}^{-1} \cdot \underline{\text{см}}^{-1}$	
МАФ	256, 369, 450, 480, 536	729	1,7	3,016; 2,65; 2,94	
ФА	248, 357, 372, 417, 459	891	1,39	3,06; 2,72; 2,55	
H_2L^1	220, 341	650	1,91	2,88; 2,77	
H_2L^2	230, 243, 304, 449	650	1,91	3,767; 3,92; 3,3036; 0,7443	
H_2L^3	230, 255	730	1,7	2,808; 2,6162	
H_2L^4	230, 304, 449	650	1,91	3,767; 3,3036; 0,7443	
H_2L^5	243, 228, 329, 340, 486	648	1,92	3,4248; 3,3316; 2, 8582; 0,7441	
H_2L^6	215, 324	646	1,91	3,31; 3,30	
H_2L^7	220, 328	656	1,89	3,314 3,302	
$E_g^{opt} = 1240/\lambda_{onset}^{abs}$					

Синтезированные В работе соединения являются хромофорами d- π . Посреди полученных лигандов H_2L^2 владеет высоким длинноволновым максимумом $(\lambda^{abs}_{max} =$ 449 H_2L^3 поглощения нм), лиганда значение длинноволнового начала собственного поглощения ($\lambda^{abs}_{onset} = 730$) самое высокое, в результате ширина запрещенной зоны этого лиганда имеет наименьшее значение среди синтезированных нами лигандов и составляет 1,7 эВ.

ТРИЭТАНОЛАМИН БИЛАН МОДИФИКАЦИЯЛАНГАН ПОЛИАКРИЛОНИТРИЛ АСОСИДА ҚИЙИН ЁНУВЧАН МАТЕРИАЛ ОЛИШ <i>Қурбонов Х.Ғ.</i> 1 , <i>Рузметов Д.А.</i> 1 , <i>Рустамов М.К.</i> 2 , <i>Гафурова Д.А.</i> 1
НАНОУГЛЕРОД ОЛИШНИНГ ПИРОЛИЗ УНУМИГА БОГЛИК ЯНГИ УСУЛИ <i>Турсунова Н.Г., Мусулмонов Н.Х.</i>
ФОСФОРСОДЕРЖАЩИЕ АНТИПИРЕНЫ ДЛЯ ПОЛИВИНИЛХЛОРИДА ХАЙДАРОВА Г.Ш., МУХИДДИНОВ Б.Ф., ¹ НУРКУЛОВ Ф.Н., ЖУРАЕВ И.И 369
АКТУАЛЬНОСТЬ ПРОБЛЕМЫ БИОДЕГРАДАЦИИ ПОЛИВИНИЛХЛОРИДА И МАТЕРИАЛОВ НА ИХ ОСНОВЕ МУХИДДИНОВ <i>Б.Ф., ЖУРАЕВ И.И., ИСТАМОВ Х.Й., ВАПОЕВ Х.М.</i>
THE PROCESS OF COPOLYMERIZATION OF WITH N-MORPHOLINE-3-CHLOROUS ISOPROPYLACRYLATE METHACRYLIC ACID <i>J.Saidov</i>
ИЗОТЕРМА И ДИФФЕРЕНЦИАЛЬНЫЕ ТЕПЛОТЫ АДСОРБЦИИ <u>H-ГЕКСАНА НА ЦЕОЛИТЕ Cu$^{2+}$ZSM-5 <i>Бахронов Хаёт Нурович</i></u>
ПОЛИЭТИЛЕН АСОСИДА ОЛИНГАН КОМПОЗИЦИОН МАТЕРИАЛЛАРНИНГ ТУЗИЛИШИ ВА ХОССАЛАРИНИ ЎРГАНИШ <i>Нуралиев Г.Т., Тожиев П.Ж., Тураев X.X.,</i> * Джалилов $A.T.$
ПОЛИЭТИЛЕННИ АММОФОС ВА МЕТАЛЛ ОКСИДЛАРИ БИЛАН МОДИФИКАЦИЯЛАШ ЖАРАЁНИ <i>Нуралиев Г.Т., Тожиев П.Ж., Тураев Х.Х.,</i> *Джалилов А.Т.
ЭКОЛОГИК ЭКСПЛУАТАЦИОН ХУСУСИЯТИ ЯХШИЛАНГАН ЁҚИЛҒИ КОМПОЗИЦИЯЛАРИНИ ОЛИШ <i>Облобердиев С.Б., Эшмухамедов М.А.</i> 379
ОПТИЧЕСКИЕ СВОЙСТВА β-ДИКАРБОНИЛЬНЫХ ПРОИЗВОДНЫХ ФЕРРОЦЕНА Умаров Б.Б., Сулаймонова З.А
ТАБИИЙ ВА СИНТЕТИК КАУЧУКЛАРДАН РЕЗИНА МАХСУЛОТЛАР ИШЛАБ ЧИҚАРИШИДА КОАГУЛЯЦИЯ ЖАРАЁНИНИНГ СИФАТГА БОҒЛИҚЛИГИ <i>Яхшиқулов Искандар Сафарович</i>
МЕТАЛЛ ОРГАНИК МОДИФИКАТОРЛАРНИ ОЛИШ ВА ФИЗИК-КИМЁВИЙ ХОССАЛАРИНИ ТАДҚИҚ ЭТИШ Ж.Т.Мирзамаҳмудов, А.Т.Джалилов 386
ЭЛЕКТРОПРОВОДНОСТЬ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ ПОЛИПИРРОЛА <i>Raximberdiyeva M.K., Kalbayev S.Ye., Kattayev N.T., Akbarov H.I.</i>
КУЧЛИ АСОСЛИ АНИОНИТЛАРНИНГ СУВЛИ ЭРИТМАЛАРДАН БЎКИШ ЖАРАЁНИ ТЕРМОДИНАМИКАСИНИ ЎРГАНИШ <i>Саидов И.А., Турсунова Г.Х., Тробов Х.Т., Жўраева Р.А., Каримов Х.Р.</i> 389
СИНТЕЗ НАНОКОМПОЗИЦИЙ ДИОКСИДА ТИТАНА ЗОЛЬ-ГЕЛЬНЫМ МЕТОДОМ 1,3 Турсунов Ф.Х., *2 Рахмонов Ж.А., 3 Донг К
ФИЗИКО-ХИМИЧЕСКИЕ И СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ СУПРАМОЛЕКУЛЯРНЫХ КОМПЛЕКСОВ АНТИАРИТМИЧЕСКОГО ПРЕПАРАТА АМИОДАРОН С ГЛИЦЕРРИЗИНОВОЙ КИСЛОТОЙ И ЕЕ МОНОАММОНИЙНОЙ СОЛЬЮ В.В. Узбеков, Х.Т. Сайдуллаева, Р.С. Эсанов, Х.А. Юлдашев, М.Б. Гафуров, Ю.И. Ощепкова, Ш.И.Салихов
О-g-С3N4/Fe2O3 КОМПОЗИТ ФОТОКАТАЛИЗАТОРИ СИНТЕЗИ ВА ИК СПЕКТРОСКОПИЯ ТАХЛИЛИ <i>Ш.М. Ўринова, Г.Б. Сидрасулиева, Н.Т. Каттаев, Х.И. Акбаров</i>