

UNIVERSUM: ХИМИЯ И БИОЛОГИЯ

Научный журнал Издается ежемесячно с ноября 2013 года Является печатной версией сетевого журнала Universum: химия и биология

Выпуск: 3(69)

Март 2020

Часть 2

УДК 54+57 ББК 24+28 U55

Главный редактор:

Ларионов Максим Викторович, д-р биол. наук;

Члены редакционной коллегии:

Аронбаев Сергей Дмитриевич, д-р хим. наук;

Безрядин Сергей Геннадьевич, канд. хим. наук;

Борисов Иван Михайлович, д-р хим. наук;

Винокурова Наталья Владимировна – канд. биол. наук;

Гусев Николай Федорович, д-р биол. наук;

Ердаков Лев Николаевич, д-р биол. наук;

Козьминых Владислав Олегович, д-р хим. наук;

Козьминых Елена Николаевна, канд. хим. наук, д-р фарм. наук;

Кунавина Елена Александровна, канд. хим. наук;

Левенец Татьяна Васильевна, канд. хим. наук;

Муковоз Пётр Петрович, канд. хим. наук;

Саттаров Венер Нуруллович, д-р биол. наук;

Сулеймен Ерлан Мэлсулы, канд. хим. наук, PhD;

Ткачева Татьяна Александровна, канд. хим. наук;

Харченко Виктория Евгеньевна, канд. биол. наук;

U55 Universum: химия и биология: научный журнал. — № 3(69). Часть 2. М., Изд. «МЦНО», 2020. — 68 с. — Электрон. версия печ. публ. — http://7universum.com/ru/nature/archive/category/3-69

ISSN: 2311-5459

DOI: 10.32743/UniChem.2020.69.3-2

Учредитель и издатель: ООО «МЦНО»

ББК 24+28

Co.	де	ржа	ние

Содержание	
Химические науки	5
Неорганическая химия	5
СИНТЕЗ И ИЗУЧЕНИЕ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ d-МЕТАЛЛОВ 1-АЦЕТИЛ-1,2,3-БЕНЗТРИАЗОЛОМ Алиева Гулой Камиловна Кадирова Шахноза Абдухалиловна Гапурова Лобар Нарзуллаевна Рахмонова Дилноза Саламовна Садуллаева Гуландом Баходировна	5
СИНТЕЗ И ИССЛЕДОВАНИЕ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ СУЛЬФАТОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ С 2-АМИНОБЕНЗИМИДАЗОЛОМ Гапурова Лобар Нарзуллаевна Кадирова Шахноза Абдухалиловна Рахмонова Дилноза Саламовна Олимова Манзура Илхомовна Амонова Матлуба Сувон кизи	11
СИНТЕЗ ЛИГАНДОВ НА ОСНОВЕ ПРОИЗВОДНЫХ ФЕРРОЦЕНА С ГИДРАЗИДАМИ МОНО- И ДИКАРБОНОВЫХ КИСЛОТ Умаров Бако Бафаевич Сулаймонова Зилола Абдурахмановна Тиллаева Дильдора Мурадуллаевна	19
Органическая химия	22
ИССЛЕДОВАНИЕ НЕКОТОРЫХ КВАНТОВО-ХИМИЧЕСКИХ ПАРАМЕТРОВ СОЕДИНЕНИЯ САЛИЦИЛОВОЙ КИСЛОТЫ С ГЛИЦИНОМ Гапуров Умурбек Улугбекович Ниязов Лазиз Нурхонович	22
СИНТЕЗ НОВОГО БИС-АЗОКАРБАМАТА И ЕГО ПАРАМЕТРЫ Джураева Шохиста Дилмурадовна Хидирова Зулхумор Ураловна	25
СИНТЕЗ И КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ N'-((АЛКИЛСУЛЬФАНИЛ)КАРБОНИЛ) БЕНЗОГИДРАЗИДОВ Зияев Абдухаким Анварович Махмудов Уткурбек Собиржон угли Зияева Мавлюда Абдуллаевна Баходир Ташходжаев	30
КВАНТОВО-ХИМИЧЕСКИЙ РАСЧЕТ ПРОИЗВОДНОЙ САЛИЦИЛОВОЙ КИСЛОТЫ С ПИРИМИДИНОМ Бахромов Хасан Каюмович Ниязов Лазиз Нурхонович	36
Физическая химия	39
ВИСКОЗИМЕТРИЧЕСКИЕ СВОЙСТВА ВОДНЫХ РАСТВОРОВ ВОДОРАСТВОРИМОЙ АЦЕТАТ ЦЕЛЛЮЛОЗЫ И Na-КАРБОКСИЛМЕТИЛКРАХМАЛА Сагдуллаев Бахтияр Убайдуллаевч Мурадов Суннатилло Абдирашидович Яркулов Ахрор Юлдашевич Зияева Манзура Рахматжоновна Акбаров Хамдам Икромович	39
ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ КРИОИЗМЕЛЬЧЕНИЯ И КРИОСЕПАРАЦИИ Мухаммадиев Баходир Темирович Рузиева Комила Эрназаровна	42
ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ НИЗКОЙ ЧАСТОТЫ В ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ Мухамадиев Баходир Темурович Гафурова Гулноз Алихоновна	45

АДСОРБЦИЯ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ ГИБРИДНЫМИ НАНОКОМПОЗИЦИОННЫМИ МАТЕРИАЛАМИ ДИАЦЕТАТЦЕЛЛЮЛОЗА-КРЕМНЕЗЕМ Яркулов Ахрор Юлдашевич Сагдуллаев Бахтиёр Убайдуллаевич Сманова Зулайхо Асаналиевна Акбаров Хамдам Икромович	48
АДСОРБЦИОННЫЕ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА МЕХАНИЧЕСКИХ СМЕСЕЙ И НАНОКОМПОЗИЦИЙ ХИТОЗАН-КРЕМНЕЗЕМ Яркулов Ахрор Юлдашевич Умаров Бахром Сманович Зияева Манзура Рахматжановна Акбаров Хамдам Икромович	54
Химия элементоорганических соединений	61
СИНТЕЗ МЕТАЛЛОКОМПЛЕКСНЫХ СОЕДИНЕНИЙ НА ОСНОВЕ МОРФОЛИНОБЕТАИНА Абдурахимов Комилжон Анвар угли Максумова Айтура Ситдиковна	61

СИНТЕЗ ЛИГАНДОВ НА ОСНОВЕ ПРОИЗВОДНЫХ ФЕРРОЦЕНА С ГИДРАЗИДАМИ МОНО- И ДИКАРБОНОВЫХ КИСЛОТ

Умаров Бако Бафаевич

д-р хим. наук, профессор Бухарского государственного университета, Узбекистан, г. Бухара E-mail: umarovbako@mail.ru

Сулаймонова Зилола Абдурахмановна

преподаватель Бухарского государственного университета, Узбекистан, г. Бухара E-mail: sulaymonovaza@mail.ru

Тиллаева Дильдора Мурадуллаевна

преподаватель Бухарского государственного университета, Узбекистан, г. Бухара E-mail: <u>tillayeva91@list.ru</u>

SYNTHESIS OF LIGANDS BASED ON DERIVATIVES OF FERROCENE WITH MONO-AND DICARBOXYLIC HYDRAZIDES ACIDS

Bako Umarov

Professor, doctor of chemical sciences of Bukhara state University
Uzbekistan, Bukhara

Zilola Sulaymanova

Teacher of Bukhara state University, Uzbekistan, Bukhara

Dildora Tillayeva

Teacher of Bukhara state University, Uzbekistan, Bukhara

АННОТАЦИЯ

Синтезирована серия новых лигандов на основе производных ферроцена с гидразидами моно-, дикарбоновых кислот. Методами элементного анализа, ИК- и ПМР-спектроскопии установлены состав и строение полученных лигандов.

ABSTRACT

Synthesized series of new ligands based on derivates of ferrocene with hydrazide mono-, dicarboxylic acids. Methods elemental analysis, IR and PMR spectroscopic methods established the composition and structure of the obtained ligands.

Ключевые слова: лиганд, производные ферроцена, реакция конденсации, гидразиды карбоновых кислот. **Keywords:** ligand, derivatives of ferrocene, condensation reaction, hydrazides of carboxylic acids.

Нами конденсацией Кляйзена моноацетилферроцена с гидразидами карбоновых кислот синтезированы новые лиганды. Установлено, что эти соединения преимущественно существуют в виде двух потенциальных конфигураций ZE^IZ^II (A), ZE^IE^{II} (Б) гидразонной формы и в процессе комплексобразования вступают в реакцию в виде α -оксиазинной формы (B) [1,2].

R¹=CH₃ R²=Fc, X=O: R³=CH₃ (HL₁), 3-NO₂-C₆H₄ (HL₂), C₆H₅-CH₂ (HL₃); R³=NH₂, X=S (HL₄).

В кристаллах β-дикарбонильных производных ферроцена имеется внутримолекулярная водородная связь. В ацетоацетильном заместителе четыре атома углерода компланарны двум атомам кислорода. Длины связей С-С и С=О значительно отличаются от

длины связи в других 1,3-дикетонах (C-C 1,522 A^0 , а C=O 1,217 A^0), существование которых доказано в кето-форме. Это определяет возможность енолизации и образования двух таутомерных форм:

В молекуле ферроценоилацетона карбонильная группа, находящаяся на более далеком расстоянии от донорной ферроценильной группы, является более

стабильной, поэтому таутомерная форма (б) — более вероятной. Длина внутримолекулярной водородной связи составляет $2,462~{\rm A}^0$.

 Таблица 1.

 Выходы, температуры плавления и результаты элементного анализа лигандов

HL	Выход %	Тплав. 0С	Епутто формула	Найдено/Вычислено, %					
			Брутто-формула	C	H	N	Fe		
HL^1	35	168-170	C ₁₄ H ₁₆ N ₂ OFe	59,01/59,18	5,37/5,68	10,23/9,86	19,22/19,65		
HL^2	43	102-104	$C_{19}H_{17}N_3O_3Fe$	58,46/58,33	4,31/4,38	10,95/10,74	14,01/14,28		
HL^3	57	155-157	$C_{20}H_{20}N_2OFe$	66.31/66.68	5,25/5,60	8,07/7,78	15,37/15,50		
HL^4	49	151-153	C ₁₃ H ₁₅ N ₃ SFe	51,49/51,84	5,14/5,02	14,23/13,95	18.62/18,54		

В ИК спектрах всех лигандов зафиксированы полосы поглощения около 3215-3225, 1630-1645, 1285-1290 и 1025-1035 см $^{-1}$, отнесенные к γ_s и γ_{as} колебаниям N-H, C=N, C-N, N-N-связей, соответственно (табл.1). Также характерными являются полосы поглошения при

835-850 см $^{-1}$ γ C=S лиганда HL_4 с фрагментами тиосемикарбазона [3].

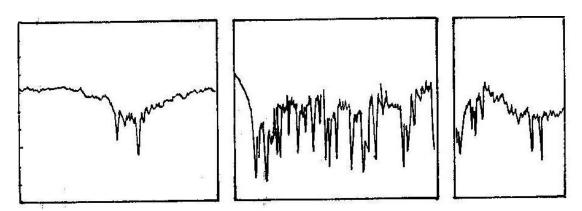


Рисунок 1. ИК спектры лиганда HL⁴.

В ИК спектрах лигандов помимо основных характеристичных полос имеются полосы поглощения средней интенсивности около 470-480 и

500-505 см⁻¹, соответствующие вращению циклопентадиенильных колец вокруг связи Fскольцо в радикале Fc (C_5H_5 -Fe- C_5H_4) [4,5].

Таблица 2.

Отнесение частот валентных колебаний (v, см-1) в ИК спектрах лигандов

HL	NH ₂	N-H	С-Н	C=O	C=N	C-N	N-N	C=S	NO_2	Fe-Cp
HL^1	-	3230	3030	2655	1535	1285	1065	-	-	470/500
HL^2	-	3190	3025	1680	1590	1295	1080	-	1535/1350	475/502
HL^3	-	3180	3035	1685	1600	1300	1040	-	-	465/503
HL^4	3425	3230	2975	-	1590	1295	1050	825	ı	470/505

ПМР спектры лигандов в растворе однозначно указывает на их гидразонное строение. Протоны радикала C_3H_4 ферроценого остатка становятся стереохимически неэквивалентными и резонируют

при δ 4,31 и 4,75 м.д. в виде триплетов равной интенсивности. Несколько уширенный сигнал при δ 9,89 м.д. соответвсвует одиночному протону N-H-группы.

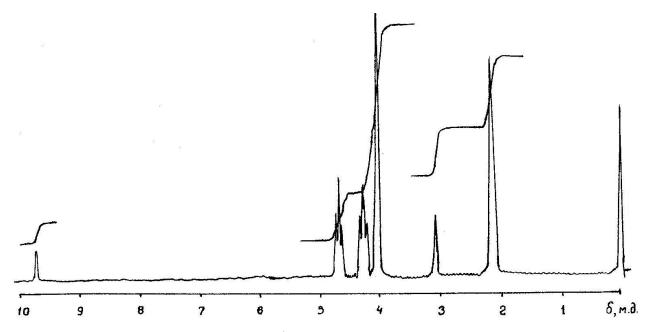


Рисунок 2. Спектр ПМР лиганда HL^4 – в растворе тиосемикарбазона ацетилферроцена в растворе ДМСО- d_6 .

Таким образом, установлены состав и строение синтезированных лигандов.

Список литературы:

- 1. Тошев М.Т., Юсупов В.Г., Дустов Х.Б., Парпиев Н.А. Кристаллохимия комплексов металлов с гидразидами и гидразонами Ташкент. Фан. 1994. -265 с.
- 2. Юсупов В.Г. Комплексные соединения переходных металлов на основе ацил-, тиоацилгидразонов и их циклических таутомеров. Дис. на соиск. учен. степ. докт. хим. наук – Ташкент.-ИХ АН РУз. -1990.
- 3. Каримов М.М. Координационные соединения переходных металлов на основе ацил-, тиоацилгидразонов α-, β-дикетонов и их циклических таутомеров. Дис. на соиск. учен. степ. канд. хим. наук Ташкент. ИХ АН РУз. -1990.
- 4. Шокова Э.А., Ким Дж. К., Ковалев В.В. 1,3-дикетоны. Синтез и свойства // Журн. орг. химии.- 2015.- Т. 51.- № 6.- С. 773-847.
- 5. Турсунов М.А., Авезов К.Г., Умаров Б.Б., Севинчов Н.Г., Сулаймонова З.А., Парпиев Н.А. Таутомерия в ряду бензоилгидразонов жирноароматических кетоальдегидов // Материалы Республиканской научно-практической конференции: «Современное состояние и перспективы развития коллоидной химии и нанохимии в Узбекистане» (к 100-летию со дня рождения академика К.С. Ахмедова) Ташкент. 24-25 ноября 2014. С. 130-131.

Научный журнал

UNIVERSUM: ХИМИЯ И БИОЛОГИЯ

№ 3(69) Март 2020

Часть 2

Свидетельство о регистрации СМИ: ЭЛ № ФС 77 – 55878 от 07.11.2013

Отпечатано в полном соответствии с качеством предоставленного оригинал-макета в типографии «Allprint» 630004, г. Новосибирск, Вокзальная магистраль, 3