

Volume: 02 Issue: 05 | 2022 ISSN: 2181-2624 www.sciencebox.uz

ИССЛЕДОВАНИЕ БИОЛОГИЧЕСКОЙ АКТИВНОСТИ ПРОИЗВОДНЫХ ФЕРРОЦЕНА

Сулаймонова Зилола Абдурахмановна Ст. преп., Бухарский государственный университет

Муталипова Дилоромхон Бахтиёрджон кизи Преп., Бухарский государственный университет

Хатамов Умеджон Фарход угли Студент III курса, Бухарский государственный университет

Аннотация: Синтезированы монокарбоновых гидразоны кислот ферроценилбутандиона-1,3 (H2L) взаимодействием гидразидов карбоновых кислот с ферроценоилацетоном. На их основе получены комплексы с ионами меди(II), иинка(II) и никеля(II). С целью выявления специфической биологической активности, нами проведен первичный скрининг некоторых синтезированных комплексов металлов биостимулирующую активность. В результате применения синтезированных препаратов, установлено, что среди них ΦK -3 (CuL·NH3) является наилучшим биостимулятором для роста и развития хлопчатника, который ускоряет всхожести семян хлопчатника на 12,87%, ускоряет раскрытие коробочек на 5,6%, уменьшает заболевание вильтом и повышает урожайность на 3,96 ц с гектара.

Ключевые слова: гидразон, комплекс, биологическая активность, биостимулятор.

В последнее время особый интерес в всемирной науке уделяется получению невредных и экологически чистых для организма биостимуляторов. Поэтому синтез безвредных металлоорганических комплексных соединений содержащих таких биогенных элементов как железо, медь, никель, цинк, марганец, кобальт, а также исследование их химических и биологических свойств имеет важное значение. Отдельные микроэлементы или комплексные соединения на основе предоставленных металлов являются токсикантами, однако, в то же время они имеют большое значение в обмене веществ, деления и размножения клеток [1-5, 9,11].

Ферроцен и его производные находят множество применений в сельском хозяйстве в качестве агрохимикатов, так и катализаторов для селективного синтеза данных агрохимикатов. Кроме того, они могут использоваться в качестве поверхностноактивных веществ при восстановлении почвы и в качестве селективных колориметрических и электрохимических хемосенсоров, представляющих интерес для сельского хозяйства [6-8, 10, 12]. Установлено, что стимулирующие свойства комплексных соединений зависят от природы металла, способов координации лигандов, а также химического состава и геометрического строения комплексов [13-20].

На нынешний день в Республике в качестве стимуляторов роста и развития хлопчатника применяют такие препараты, как Γ –13, TЖ –85, T– 86, Π –4. Их внедрение дает хлопкоробам возможность чередовать их применение во избежание становления стойкости возбудителей к грибковым, бактериальным и вирусным болезням, а также в одно и тоже время ускоряет созревание, увеличивает качество волокна и урожайность.

Volume: 02 Issue: 05 | 2022 ISSN: 2181-2624

www.sciencebox.uz

Следует отметить, что некоторые производные ферроцена нашли сельском хозяйстве в качестве компонентов фунгицидов, акарицидов, пестицидов и синергистов. Нами конденсацией Кляйзена получен В-дикетон-1-ферроценилбутандион-1,3 Γ11. 17, 201. Синтезированы гидразоны монокарбоновых кислот ферроценилбутандиона-1,3 (H₂L) взаимодействием гидразидов карбоновых кислот с ферроценоилацетоном. На их основе получены комплексы с ионами меди(II), цинка(II) и никеля(II). С целью выявления специфической биологической активности, нами проведен скрининг некоторых синтезированных комплексов биостимулирующую активность [14-18]. В качестве эталона применили биостимулятора П-4. В экспериментах использовались семена хлопчатника сорта "Бухоро-8". В частности определено, что растворы синтезированных нами препаратов под условными названиями Φ K-1 (NiL·NH₃), Φ K-2 (ZnL·NH₃), Φ K-3 (CuL·NH₃), проявляют биологическую активность.

Исследования проводились 2019-2021 годах на хлопковых полях фермерского хозяйства "Навруз Хамза" Бухарского города. Перед посевом семена хлопчатника сорта Бухоро-8 обработали 0,005%-ным раствором препаратов ФК-1, ФК-2, ФК-3. По методическому руководству НИИХ Уз провели фенологические наблюдения и в опытных и контрольных полях, проведены одинаковые агротехнические мероприятия. Показатели наблюдений демонстрировали, что в опытных и контрольных полях опытные семена проросли в течение 7 дней, а контрольный вариант — за 8 дней. На опытных участках до полного появления проростков семян хлопчатника для определения эффективности применяемых препаратов на всхожесть семян в течение 12 дней после посева, мы провели наблюдения через каждых двух дней. Было отмечено, что при использовании препаратов ФК-1, ФК-2 и ФК-3 всхожесть семян увеличивается на 9,1; 9,87 и 12,87% соответственно (рис. 1).

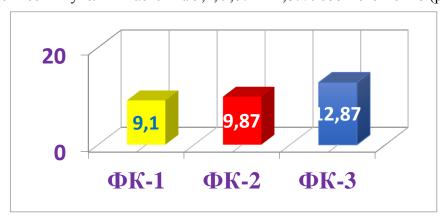


Рис. 1. Значения мониторинга всхожести семян хлопчатника (относительно препарата П-4, %).

В итоге высочайшей всходимости семян, изменения биологической массы, развития корневой системы интенсивный рост всходов хлопчатника, ветвление, а также формирование частей урожая выше по соотношению с растениями в контрольном поле. В силу того, что в составе препаратов содержатся ионы Ni^{2+} , Cu^{2+} , Zn^{2+} и Fe^{2+} , оказывают они положительное воздействие на развитие корневой и стеблевой системы побегов хлопчатника, укрепляют иммунную систему растений, усиливают впитывание пищевых веществ через корни хлопчатника и его развитие.

Эксперимент провели в малозасоленных полях, где беспрерывно высеивали хлопчатник и обширно распространены споры вильта. На каждый гектар площади в периоде

Volume: 02 Issue: 05 | ISSN: 2181-2624

www.sciencebox.uz

бутонизации хлопчатника ввели препараты по 150 г, вместе с азотными удобрениями в грунт на глубину 10-12 см и еще один раз опрыснули данными препаратами и получили надежные результаты. Эти комплексы увеличивают физиологическую активность корней, усиливают впитывание питательных веществ через корни хлопчатника. Таким образом, растений хлопчатника обнаружено, что препараты ускоряют рост защищают его от болезни вильта. В конце сезона раскрытие коробочек ускорилось на 3,50; 4,53 и 5,60 процентов с гектара.

Агрохимическими исследованиями была установлена, что биостимулирующая активность синтезированных комплексных соединений для аграрных растений связано с одновременным пребыванием биометалла и биолиганда.

В контрольном варианте 16% побегов хлопчатника подверглись болезни вильта, а в поле, где применяли препараты, всходимость семян ускорилось, и в результате мощного развития корневой системы число заряженных вильтом растений составил 10,6; 5,8 и 5% соответственно (т.е. заболевание растений уменьшилось на 5,4; 10,2 и 11%).

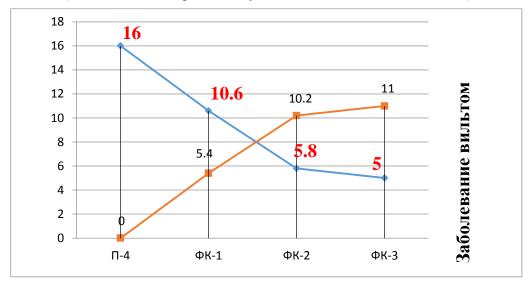


Рис. 2. Уменьшение число заряженных вильтом хлопчатника.

Итоги опытов дали возможность для создания препаратов, ускоряющие всходимость семян, рост растений хлопчатника и охраняющие его от заболевания вильта.

Исходя из наших исследований (рис. 3) можно сделать вывод, что лучшую биостимулирующую активность для хлопчатника проявило синтезированное нами вещество под условном названием ФК-3 (CuL·NH₃).

Урожайность в сравнении с контрольным вариантом увеличилась на 2,34; 3,55 и 3,96 ц/га.

Volume: 02 Issue: 05 | 2022 ISSN: 2181-2624 www.sciencebox.uz

Рис. 3.23. Показатели урожайности хлопчатника.

Использование синтезированных нами препаратов Φ K-1, Φ K-2 и Φ K-3 дает множество преимуществ:

- ▶ повышают устойчивость хлопчатника к неблагоприятным факторам (холоду, жаре, засухе);
- > повышают урожайность и качество продукции;
- обладают фунгицидными и бактерицидными свойствами;
- безопасны для живых организмов.

Вышеуказанные показатели потвердили эффективность препарата ФК-3, который рекомендован как биостимулятор хлопчатника. Экономическая эффективность полученная при использовании стимулятора ФК-3 на 1 га земли составляет 1,2 млн. сум.

В результате применения препаратов ФК-1, ФК-2 и ФК-3, установлено, что среди них ФК-3 (CuL·NH₃) является наилучшим биостимулятором для роста и развития хлопчатника, который ускоряет всхожести семян хлопчатника на 12,87%, ускоряет раскрытие коробочек на 5,6%, уменьшает заболевание вильтом и повышает урожайность на 3,96 ц с гектара.

ЛИТЕРАТУРА

- 1. Cullen W.R., Woollins J.D. Ferrocene-containing metal complexes// Coord. Chem. Rev. 1981. Vol. 39. P. 1-30.
- 2. Colacot T.J. A Concise Updateon the Applications of ChiralFerrocenylPhosphines in Homogeneous Catalysis Leading to Organic Synthesis // Chem. Rev. 2003. –Vol. 103. P. 3101-3118.
- 3. Sulaymonova, Zilola Abduraxmonovna. "Preparation of meta-nitrobenzoylhydrazone ferrocenoylacetone and synthesis on its basis." Chemical Technology, Control and Management 2021.4 (2021): 05-11.
- 4. Умаров, Бако Бафаевич, Зилола Абдурахмановна Сулаймонова, and Махбуба Камаловна Ачылова. "Синтез комплексов на основе монокарбонильных производных

Volume: 02 Issue: 05 | 2022 ISSN: 2181-2624 www.sciencebox.uz

ферроцена с гидразидами карбоновых кислот." Universum: химия и биология 1-1 (79) (2021): 85-89.

- 5. Умаров, Бако Бафаевич, Зилола Абдурахмановна Сулаймонова, and Дильдора Мурадуллаевна Тиллаева. "Синтез лигандов на основе производных ферроцена с гидразидами моно-и дикарбоновых кислот." Universum: химия и биология 3-2 (69) (2020).
- 6. Умаров Б.Б., Сулаймонова З.А., Тиллаева Д.М. Комплексные соеди-нения переходных металлов на основе продуктов конденсации ферроцено-илацетона с гидразидами карбоновых кислот // Бухоро мухандислик технология институти "Фан ва технологиялар тараққиёти" журнали Узбекистан, 2020. №6. С. 7-12.
- 7. Сулаймонова, Зилола Абдурахмановна, Бако Бафаевич Умаров, and Зулфия Кобиловна Кодирова. "Термическое поведение мета-нитробензоилгидразона ферроценоилацетона и его комплекса с ионом меди(II)." Universum: химия и биология 11-2 (89) (2021): 15-18.
- 8. Умаров Б.Б., Сулаймонова З.А., Тиллаева Д.М. Комплексные соеди-нения переходных металлов на основе конденсации производных ферроцена с гидразидами карбоновых кислот // Научный вестник Наманганского государственного университета. 2020. №9. С. 58-63.
- 9. Sulaymonova Z.A., Umarov B.B., Choriyeva S.A., Navruzova M.B. Synthesis of Complexes Based On Monocarbonyl Ferrocene Derivatives with Carbonic Acid Hydrases // International Journal of Academic Pedagogical Research (IJAPR). 2021. Vol. 5. C. 134-137.
- 10. Умаров Б.Б., Сулаймонова З.А. Синтез комплекса никеля(II) на основе производных ферроцена // Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА Российский технологический университет" Симпозиум "Химия в народном хозяйстве". Дубровицы -2020. С. 106-107.
- 11. Сулаймонова, З. А., М. Б. Наврузова, and С. А. Чориева. "Термическое исследование производных ферроцена." Editor coordinator (2021): 473.
- 12. Сулаймонова З.А., Наврузова М., Чориева С. Синтез β-дикарбо-нильного производного ферроцена-ферроценоилацетона // "Замонавий кимё-нинг долзарб муаммолари" Республика микёсидаги хорижий олимлар ишти-рокидаги онлайн илмий-амалий анжуманининг илмий маколалари тўплами. Бухоро -2020, 4-5 декабрь. Бухоро. С. 375-377.
- 13. Умаров Б.Б., Сулаймонова З.А., Бахранова Д.А. Синтез β-дикар-бонильных производных ферроцена // "Наука и инновации в современных условиях Узбекистана" Республиканская научно-практическая конференция. Нукус-2020, 20 май. С. 114-115.
- 14. Сулаймонова З.А., Атаева А.О. Синтез лигандов на основе моно-карбонильных производных ферроцена с гидразидами карбоновых кислот // "Замонавий кимёнинг долзарб муаммолари" Республика микёсидаги хорижий олимлар иштирокидаги онлайн илмий-амалий анжуманининг илмий маколалари тўплами. Бухоро -2020, 4-5 декабрь. Бухоро. С. 323-324.
- 15. Сулаймонова З.А., Кадирова З.К. Синтез лигандов на основе произ-водных ферроцена с гидразидами карбоновых кислот // Ўзбекистонда илмий-амалий тадқиқотлар

Volume: 02 Issue: 05 | 2022 ISSN: 2181-2624 www.sciencebox.uz

мавзусидаги конференция материаллари. -2020, 4-5 декабрь, №15, 5 апрель. - С. 180-181.

- 16. Сулаймонова З.А., Авезова Ф.М. Комплексы металлов с гидразо-нами моноацетилферроцена // "Замонавий кимёнинг долзарб муаммолари" Республика микёсидаги хорижий олимлар иштирокидаги онлайн илмий-ама-лий анжуманининг илмий маколалари тўплами. Бухоро-2020, 4-5 декарь. С. 393-395.
- 17. Сулаймонова, Зилола. "Комплексные соединения никеля (II) на основе производных ферроцена с гидразидами монокарбоновых кислот." ЦЕНТР НАУЧНЫХ ПУБЛИКАЦИЙ (buxdu. uz) 4.4 (2021).
- 18. Умаров Б.Б., Сулаймонова З.А. Синтез комплексов переходных ме-таллов на основе моноацетилферроцена // ЎзФА академиги, к.ф.д., проф. Парпиев Н.А. таваллудининг 90 йиллик хотирасига бағишланган "Комплекс бирикмалар кимёсининг долзарб муаммолари" мавзусидаги Республика ил-мий-амалий конференция материаллари тўплами. Ташкент 2021, 14-15 сентябрь. С. 56.
- 19. Умаров Б.Б., Сулаймонова З.А. Комплексы меди(II) с гидразоном метанитробензоилгидразона с ферроценоилацетона // ЎзФА академиги, к.ф.д., проф. Парпиев Н.А. таваллудининг 90 йиллик хотирасига бағишланган "Комплекс бирикмалар кимёсининг долзарб муаммолари" мавзусидаги Республика илмий-амалий конференция материаллари тўплами. Ташкент 2021, 14-15 сентябрь. С. 61-62.
- 20. Сулаймонова З.А. Термическое исследование бензоилгидразона ферроценоилацетона и его комплексов с переходными металлами // Сборник трудов международной научно-теоретической конференции на тему: «Куатбековские чтения-1: Уроки Независимости», посвященной 30-летию Независимости Республики Казахстан 23 апрель 2021 г. С. 9-12.