

79 October, 2021

THE ISSUE CONTAINS:

Proceedings of the 1st
International Scientific
and Practical Conference

MODERN SCIENTIFIC TRENDS AND STANDARDS

SANTA ROSA, ARGENTINA 11-12.10.2021

Gribincea L.	NAL LAW OBLIGAȚIA DE CONFORMITATE A MĂRFURILOR CONFORM PREVEDERILOR CONVENȚIEI DE LA VIENA ASUPRA CONTRACTELOR DE VÂNZARE INTERNAȚIONALĂ DE MĂRFURI DIN 11 APRILIE 1980	87
MEDICINE AND PHARM	1	
Tolkachev V.S. Ostrovskij V.V.	OUTCOMES IN PATIENTS WITH TRACTION INJURIES OF SCIATIC NERVES AFTER TOTAL HIP REPLACEMENTS USING	102
Bazhanov S.P.	MICROSURGICAL NEUROLYSIS	102
Кебало Д.І.	РАКОВО - ЄМБРІОНАЛЬНІЙ АНТИГЕН В ВИДІЛЕННЯХ ІЗ	405
Званцева Е.Д.	МОЛОЧНИХ ЗАЛОЗ ПРИ ГАЛАКТОРЕЇ	105
Сулейман М.М.	ВИВЧЕННЯ АФІНІТЕТУ ТРИЦИКЛІЧНИХ ХІНОЛОНКАРБОКСАМІДІВ	
Тітко Т.О. Голік М.Ю.	ДО КАРБОАНГІДРАЗИ ІІ	107
Віслоус О.О.		107
Перехода Л.О.		
ENERGETICS	 	
Voloshko A.V. Dzheria T.E.	WAVELET ANALYSIS AND ENCRYPTION OF INFORMATION	111
Кадыров А.Л.	SIGNALS ENTIA DASPIATIAG CO PHENHON SHEPFETIAVIA P TA PAVIAVIACTA HE	
Джавхарова Н.И.	ПУТИ РАЗВИТИЯ СОЛНЕЧНОЙ ЭНЕРГЕТИКИ В ТАДЖИКИСТАНЕ	120
Касымов Д.А.		120
Коменда Н.В.	АНАЛІЗ ШЛЯХІВ ПОКРАЩЕННЯ ПРОЦЕСУ СПОЖИВАННЯ	
Панасюк І.Ю.	ЕЛЕКТРИЧНОЇ ЕНЕРГІЇ НА ПРИКЛАДІ ХОЛОДИЛЬНИХ	124
	УСТАНОВОК	
PHYSICS AND MATHS		
Венедиктов В.Ю.	FELIEDALING OFFICION PLANES CHOROEL 200 ALIMENA	
вепедиктов вло.		
Хасанов М.А.	ГЕНЕРАЦИЯ ОПТИЧЕСКИХ ВИХРЕЙ С ИСПОЛЬЗОВАНИЕМ ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД	134
Хасанов М.А.	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД	
Хасанов М.А. Венедиктов В.Ю. Хасанов М.А.	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ	134
Венедиктов В.Ю.	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД	
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE	
Венедиктов В.Ю. Хасанов М.А.	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ	138
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ ПРЕВРАЩЕНИЕМ ПРИ ЭКСПЛУАТАЦИИ ДЛЯ ГОРЯЧЕГО	
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ	138
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE Сидорчук О.Н.	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ ПРЕВРАЩЕНИЕМ ПРИ ЭКСПЛУАТАЦИИ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ АЛЮМИНИЕВОГО СПЛАВА	138
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE Сидорчук О.Н. AGROTECHNOLOGIES A	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ ПРЕВРАЩЕНИЕМ ПРИ ЭКСПЛУАТАЦИИ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ АЛЮМИНИЕВОГО СПЛАВА IND AGRICULTURAL INDUSTRY	138
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE Сидорчук О.Н.	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ ПРЕВРАЩЕНИЕМ ПРИ ЭКСПЛУАТАЦИИ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ АЛЮМИНИЕВОГО СПЛАВА IND AGRICULTURAL INDUSTRY	138
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE Сидорчук О.Н. AGROTECHNOLOGIES A Підтереба М.О.	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ ПРЕВРАЩЕНИЕМ ПРИ ЭКСПЛУАТАЦИИ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ АЛЮМИНИЕВОГО СПЛАВА IND AGRICULTURAL INDUSTRY РОЗРОБКА ТА ЗАСТОСУВАННЯ ОПТИМІЗОВАНИХ	138
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE Сидорчук О.Н. AGROTECHNOLOGIES A	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ ПРЕВРАЩЕНИЕМ ПРИ ЭКСПЛУАТАЦИИ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ АЛЮМИНИЕВОГО СПЛАВА AND AGRICULTURAL INDUSTRY РОЗРОБКА ТА ЗАСТОСУВАННЯ ОПТИМІЗОВАНИХ ТЕХНОЛОГІЧНИХ РІШЕНЬ У СВИНАРСТВІ ШЛЯХОМ КОМП'ЮТЕРНОГО МОДЕЛЮВАННЯ ВИРОБНИЧИХ ПРОЦЕСІВ ПРОБЛЕМИ СИСТЕМНОСТІ В УПРАВЛІННІ ГРУНТОВИМИ	138 141 144
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE Сидорчук О.Н. AGROTECHNOLOGIES A Підтереба М.О.	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ ПРЕВРАЩЕНИЕМ ПРИ ЭКСПЛУАТАЦИИ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ АЛЮМИНИЕВОГО СПЛАВА IND AGRICULTURAL INDUSTRY РОЗРОБКА ТА ЗАСТОСУВАННЯ ОПТИМІЗОВАНИХ ТЕХНОЛОГІЧНИХ РІШЕНЬ У СВИНАРСТВІ ШЛЯХОМ КОМП'ЮТЕРНОГО МОДЕЛЮВАННЯ ВИРОБНИЧИХ ПРОЦЕСІВ	138
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE Сидорчук О.Н. AGROTECHNOLOGIES A Підтереба М.О. Трускавецький Р.С.	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ ПРЕВРАЩЕНИЕМ ПРИ ЭКСПЛУАТАЦИИ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ АЛЮМИНИЕВОГО СПЛАВА IND AGRICULTURAL INDUSTRY РОЗРОБКА ТА ЗАСТОСУВАННЯ ОПТИМІЗОВАНИХ ТЕХНОЛОГІЧНИХ РІШЕНЬ У СВИНАРСТВІ ШЛЯХОМ КОМП'ЮТЕРНОГО МОДЕЛЮВАННЯ ВИРОБНИЧИХ ПРОЦЕСІВ ПРОБЛЕМИ СИСТЕМНОСТІ В УПРАВЛІННІ ГРУНТОВИМИ РЕСУРСАМИ УКРАЇНИ ТА ЇХНЬОЮ РОДЮЧІСТЮ	138 141 144
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE Сидорчук О.Н. AGROTECHNOLOGIES A Підтереба М.О. Трускавецький Р.С. LIGHT INDUSTRY AND I	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ ПРЕВРАЩЕНИЕМ ПРИ ЭКСПЛУАТАЦИИ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ АЛЮМИНИЕВОГО СПЛАВА AND AGRICULTURAL INDUSTRY РОЗРОБКА ТА ЗАСТОСУВАННЯ ОПТИМІЗОВАНИХ ТЕХНОЛОГІЧНИХ РІШЕНЬ У СВИНАРСТВІ ШЛЯХОМ КОМП'ЮТЕРНОГО МОДЕЛЮВАННЯ ВИРОБНИЧИХ ПРОЦЕСІВ ПРОБЛЕМИ СИСТЕМНОСТІ В УПРАВЛІННІ ГРУНТОВИМИ РЕСУРСАМИ УКРАЇНИ ТА ЇХНЬОЮ РОДЮЧІСТЮ	138 141 144 153
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE Сидорчук О.Н. AGROTECHNOLOGIES A Підтереба М.О. Трускавецький Р.С. LIGHT INDUSTRY AND I	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ ПРЕВРАЩЕНИЕМ ПРИ ЭКСПЛУАТАЦИИ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ АЛЮМИНИЕВОГО СПЛАВА IND AGRICULTURAL INDUSTRY РОЗРОБКА ТА ЗАСТОСУВАННЯ ОПТИМІЗОВАНИХ ТЕХНОЛОГІЧНИХ РІШЕНЬ У СВИНАРСТВІ ШЛЯХОМ КОМП'ЮТЕРНОГО МОДЕЛЮВАННЯ ВИРОБНИЧИХ ПРОЦЕСІВ ПРОБЛЕМИ СИСТЕМНОСТІ В УПРАВЛІННІ ГРУНТОВИМИ РЕСУРСАМИ УКРАЇНИ ТА ЇХНЬОЮ РОДЮЧІСТЮ	138 141 144
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE Сидорчук О.Н. AGROTECHNOLOGIES A Підтереба М.О. Трускавецький Р.С. LIGHT INDUSTRY AND I Радченко А.Е.	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ ПРЕВРАЩЕНИЕМ ПРИ ЭКСПЛУАТАЦИИ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ АЛЮМИНИЕВОГО СПЛАВА AND AGRICULTURAL INDUSTRY РОЗРОБКА ТА ЗАСТОСУВАННЯ ОПТИМІЗОВАНИХ ТЕХНОЛОГІЧНИХ РІШЕНЬ У СВИНАРСТВІ ШЛЯХОМ КОМП'ЮТЕРНОГО МОДЕЛЮВАННЯ ВИРОБНИЧИХ ПРОЦЕСІВ ПРОБЛЕМИ СИСТЕМНОСТІ В УПРАВЛІННІ ГРУНТОВИМИ РЕСУРСАМИ УКРАЇНИ ТА ЇХНЬОЮ РОДЮЧІСТЮ FOOD INDUSTRY РОЗРОБКА ТЕХНОЛОГІЇ ЯЄЧНО-МАСЛЯНИХ СОУСІВ	138 141 144 153
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE Сидорчук О.Н. AGROTECHNOLOGIES A Підтереба М.О. Трускавецький Р.С. LIGHT INDUSTRY AND I	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ ПРЕВРАЩЕНИЕМ ПРИ ЭКСПЛУАТАЦИИ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ АЛЮМИНИЕВОГО СПЛАВА AND AGRICULTURAL INDUSTRY РОЗРОБКА ТА ЗАСТОСУВАННЯ ОПТИМІЗОВАНИХ ТЕХНОЛОГІЧНИХ РІШЕНЬ У СВИНАРСТВІ ШЛЯХОМ КОМП'ЮТЕРНОГО МОДЕЛЮВАННЯ ВИРОБНИЧИХ ПРОЦЕСІВ ПРОБЛЕМИ СИСТЕМНОСТІ В УПРАВЛІННІ ГРУНТОВИМИ РЕСУРСАМИ УКРАЇНИ ТА ЇХНЬОЮ РОДЮЧІСТЮ FOOD INDUSTRY РОЗРОБКА ТЕХНОЛОГІЇ ЯЄЧНО-МАСЛЯНИХ СОУСІВ	138 141 144 153
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE Сидорчук О.Н. AGROTECHNOLOGIES A Підтереба М.О. Трускавецький Р.С. LIGHT INDUSTRY AND I Радченко А.Е. MODELING AND NANO Равшанов Н. Шафиев Т.Р.	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ ПРЕВРАЩЕНИЕМ ПРИ ЭКСПЛУАТАЦИИ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ АЛЮМИНИЕВОГО СПЛАВА IND AGRICULTURAL INDUSTRY РОЗРОБКА ТА ЗАСТОСУВАННЯ ОПТИМІЗОВАНИХ ТЕХНОЛОГІЧНИХ РІШЕНЬ У СВИНАРСТВІ ШЛЯХОМ КОМП'ЮТЕРНОГО МОДЕЛЮВАННЯ ВИРОБНИЧИХ ПРОЦЕСІВ ПРОБЛЕМИ СИСТЕМНОСТІ В УПРАВЛІННІ ГРУНТОВИМИ РЕСУРСАМИ УКРАЇНИ ТА ЇХНЬОЮ РОДЮЧІСТЮ FOOD INDUSTRY РОЗРОБКА ТЕХНОЛОГІЇ ЯЄЧНО-МАСЛЯНИХ СОУСІВ ТЕСННОLOGY	138 141 144 153
Венедиктов В.Ю. Хасанов М.А. CHEMISTRY AND MATE Сидорчук О.Н. AGROTECHNOLOGIES A Підтереба М.О. Трускавецький Р.С. LIGHT INDUSTRY AND I Радченко А.Е. MODELING AND NANO Равшанов Н.	ЦИЛИНДРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ МОД ФОРМИРОВАНИЕ ОПТИЧЕСКИХ ВИХРЕЙ С ПОМОЩЬЮ ГОЛОГРАММ С АСИММЕТРИЧНЫМ ПРОФИЛЕМ ШТРИХА RIALS SCIENCE ШТАМПОВА СТАЛЬ С РЕГУЛИРУЕМЫМ АУСТЕНИТНЫМ ПРЕВРАЩЕНИЕМ ПРИ ЭКСПЛУАТАЦИИ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ АЛЮМИНИЕВОГО СПЛАВА IND AGRICULTURAL INDUSTRY РОЗРОБКА ТА ЗАСТОСУВАННЯ ОПТИМІЗОВАНИХ ТЕХНОЛОГІЧНИХ РІШЕНЬ У СВИНАРСТВІ ШЛЯХОМ КОМП'ЮТЕРНОГО МОДЕЛЮВАННЯ ВИРОБНИЧИХ ПРОЦЕСІВ ПРОБЛЕМИ СИСТЕМНОСТІ В УПРАВЛІННІ ГРУНТОВИМИ РЕСУРСАМИ УКРАЇНИ ТА ЇХНЬОЮ РОДЮЧІСТЮ FOOD INDUSTRY РОЗРОБКА ТЕХНОЛОГІЇ ЯЄЧНО-МАСЛЯНИХ СОУСІВ ТЕСНЮЬСОБУ РАЗРАБОТКА МАТЕМАТИЧЕСКИЙ МОДЕЛИ И	138 141 144 153

MODELING AND NANOTECHNOLOGY

Равшанов Нормахмад

доктор технических наук, профессор, заведующий лаборатории «Моделирования сложных систем» научно-исследовательского института развития цифровых технологии и искусственного интеллекта, Республика Узбекистан

Шафиев Турсун Рустамович

доктор философии (phd) по техническим наукам, заведующий кафедры «Информационные технологии» Бухарского государственного университета, Республика Узбекистан

Назаров Шахзод Эркинович

преподаватель кафедры «Прикладная математика и технологии программирования» Бухарского государственного университета, Республика Узбекистан

РАЗРАБОТКА МАТЕМАТИЧЕСКИЙ МОДЕЛИ И ПРОГРАММНОГО КОМПЛЕКСА ДЛЯ ПРОГНОЗИРОВАНИЯ КОНЦЕНТРАЦИИ ВРЕДНЫХ ВЕЩЕСТВ В АТМОСФЕРЕ

Аннотация. В работе рассматривается численное моделирование процесс переноса и диффузии загрязнителей воздуха в пограничном слое атмосферы. Разработана математическая модель распространения промышленных выбросов в атмосфере с учетом скорости перемещения мелкодисперсных субстанции и ряд других факторов, влияющих на изменение концентрации вредных веществ в атмосфере. Модель описывается многомерными уравнениями в частных производных с соответствующими начальными и граничными условиями. Для численного интегрирования задачи использовано метод физического расщепления по физическим факторам, которая решается с помощью конечно-разностной схемы с вторым порядком точности пространственных переменных, так и по времени. Также, разработан программный комплекс для проведения вычислительного эксперимента на компьютере и комплексного исследования процесс переноса и диффузии вредных веществ в атмосфере.

Введения. Современная экономика стран все большей меры истощает силы природы, все шире используется эти силы, богатство природы для ускорения научно-технического прогресса. Конечно, не всегда это процессы проносят положительные результаты. Большими темпами строится заводы и фабрики, которыми являются основным фактором экологического проблемы - антропогенные источники. Именно антропогенные источники может нанести природе невосполнимый ущерб, и основная угрозой для него является именно загрязнённая атмосфера. Поэтому, прогнозирования, мониторинг и оценка экологического состояния атмосферы, проектирования и размещения промышленных объектов с соблюдением санитарных норм является первоочередной задачей в проблеме охране окружающей среды.

За последние годы учёными разработаны математические инструменты для исследования, прогнозирования и мониторинга экологического состояния промышленных регионов, которые основывается на — математическую модель, численного алгоритма и программного средства для проведения опытных вычислительных экспериментов на ЭВМ и получены значительные теоретические и прикладные результаты по выше указанной проблемой.

Проведённый анализ научных работ [1–4], связанных с проблемой математического моделирования процесса распространение и диффузии аэрозольных частиц в атмосфере показало, что при математическом моделировании и исследовании выше указанного процесса, не рассмотрено изменения скоростей перемещения частиц в атмосфере, которая изменяется со временем и в зависимости от физико-механических свойств рассматриваемого вещества.

Постановка задачи. С учетом выше сказанной для исследования процесса переноса и диффузии аэрозольных частиц в атмосфере с учетом существенных параметров u_{q}, v_{q}, w_{q} составляющие скорости частиц по направлениям x, y, z соответственно, а также орографии рассматрываемой местности рассмотрим математическую модель, описывающую на основе закона гидромеханики с помощью многомерного дифференциального уравнения в частных производных [5,6]:

$$\frac{\partial \theta}{\partial t} + u_{u} \frac{\partial (h\theta)}{\partial x} + v_{u} \frac{\partial (h\theta)}{\partial y} + w_{u} \frac{\partial (h\theta)}{\partial z} + \sigma h \theta =$$

$$= \mu \left(\frac{\partial^{2} (h\theta)}{\partial x^{2}} + \frac{\partial^{2} (h\theta)}{\partial y^{2}} \right) + \frac{\partial}{\partial z} \left(\kappa \frac{\partial (h\theta)}{\partial z} \right) + \delta Q; \tag{1}$$

$$m\frac{du_{u}}{dt} = c_f \pi r^2 \rho_{\varepsilon} (u_{u} - U)^2;$$
(2)

$$m\frac{dv_{u}}{dt} = c_{f}\pi r^{2}\rho_{e}(v_{u} - U)^{2};$$
(3)

$$m\frac{dw_{u}}{dt} = -\frac{4}{3}\pi r^{3}(\rho_{u} - \rho_{e})g - k_{f}\mu_{e}\pi rw_{u} + F_{n}$$
(4)

с соответствующими начальными

$$\theta\big|_{t=0} = \theta^0; \ u_u\big|_{t=0} = u_u^0; \ v_u\big|_{t=0} = v_u^0; \ w_u\big|_{t=0} = w_u^0$$
(5)

и граничными условиями

$$-\mu \frac{\partial h\theta}{\partial x}\bigg|_{x=0} = \xi h(\theta_{s} - \theta); \qquad \mu \frac{\partial h\theta}{\partial x}\bigg|_{x=L_{x}} = \xi h(\theta_{s} - \theta); \tag{6}$$

$$-\mu \frac{\partial h\theta}{\partial y}\bigg|_{y=0} = \xi h(\theta_{e} - \theta); \qquad \mu \frac{\partial h\theta}{\partial y}\bigg|_{y=L_{y}} = \xi h(\theta_{e} - \theta); \tag{7}$$

$$-\kappa \frac{\partial h\theta}{\partial z}\bigg|_{z=0} = \xi h(\beta \theta - Q_0); \qquad \kappa \frac{\partial \theta h}{\partial z}\bigg|_{z=H} = \xi h(\theta_s - \theta). \tag{8}$$

Здесь $U = \sqrt{u^2 + v^2 + w^2}$ — скорость воздушного потока; t — время; x,y,z — координаты; θ — концентрация распространяющегося вещества; σ — коэффициент поглощения вредных веществ в атмосфере; μ — коэффициент диффузии; κ — коэффициент турбулентности; δ — функция Дирака; Q — мощность источников; θ^0 — первичная концентрация вредных веществ в атмосфере; m— масса частицы; c_f — коэффициент лобового сопротивления частиц; r— радиус частицы; ρ_s — плотность воздуха; ρ_q — плотность частиц; ρ_s — ускорения свободного падания; ρ_s — коэффициент формы тела для силы сопротивления; ρ_s — вязкость воздуха; ρ_s — подъёмная сила воздушного потока;

 eta_- коэффициент взаимодействия с подстилающей поверхности; Q_0 - количество аэрозольных частиц оторвавшихся от шероховатости земной поверхности; ξ_- коэффициент для проведения граничного условия к размерному виду; θ_s - концентрация взвешенных веществ в соседних областях решаемых задач.

Метод решения. Из постановки задачи и уравнения (1) видно, что они описывают три физический процесс — перенос субстанции по направлению движения воздушной массы атмосферы, молекулярная диффузия субстанции в атмосфере и поглощения вредных веществ в атмосфере.

Учитывая вышеуказанных обстоятельств, для решения задачи используем метод расщепления по физическим процессам на каждом временном слое. Поэтому для эффективного решения поставленной задачи расщепим её по физическим процессами — на конвекционную часть, диффузионную часть и часть поглощения субстанции в атмосфере.

Метод расщепления по физическим процессам базируется на аппроксимации высоко порядка [7], обосновании аддитивность процессов для достаточно малых шагов по времени [8] и доказательстве суммарной аппроксимацией исходного уравнения вследствие расщепления. Общая теория расщепления полно изложено в [9], а особенности расщепления для задачи конвекции в прямоугольных областях и параллелепипедах в [10,11].

Для численного решения поставленной задачи (1)-(9) будем считать, что искомое решение — это гладкая функция во всем пространстве. Используя аддитивность принципиально различных физических процессов переноса и диффузии масс в атмосфере в малом интервале времени $t_n \le t \le t_{n+1}$, мы рассмотрим их как отдельные задачи.

Процесс переноса субстанции с ее сохранением вдоль траектории будем рассматривать как задачу \mathbf{A} :

$$\frac{\partial \theta_1}{\partial t} + u_q \frac{\partial (h\theta_1)}{\partial x} + v_q \frac{\partial (h\theta_1)}{\partial y} + w_q \frac{\partial (h\theta_1)}{\partial z} = \frac{1}{3} \delta Q; \tag{9}$$

$$m\frac{du_{u}}{dt} = c_{f}\pi r^{2}\rho_{e}(u_{u} - U)^{2};$$

$$\tag{10}$$

$$m\frac{dv_{u}}{dt} = c_{f}\pi r^{2}\rho_{e}(v_{u} - U)^{2}; \qquad (11)$$

$$m\frac{dw_{u}}{dt} = -\frac{4}{3}\pi r^{3}(\rho_{u} - \rho_{e})g - k_{f}\mu_{e}\pi rw_{u} + F_{n};$$
(12)

с начальными

$$\theta_1 \Big|_{t=0} = \theta_3^n; \ u_u \Big|_{t=0} = u_u^0; \ v_u \Big|_{t=0} = v_u^0; \ w_u \Big|_{t=0} = w_u^0$$
(13)

и граничными условиями

$$-\mu \frac{\partial (h\theta_1)}{\partial x}\bigg|_{x=0} = \xi h(\theta_s - \theta_1); \qquad \mu \frac{\partial (h\theta_1)}{\partial x}\bigg|_{x=L_x} = \xi h(\theta_s - \theta_1); \tag{14}$$

$$-\mu \frac{\partial (h\theta_1)}{\partial x}\bigg|_{x=0} = \xi h(\theta_e - \theta_1); \qquad \mu \frac{\partial (h\theta_1)}{\partial x}\bigg|_{x=L_x} = \xi h(\theta_e - \theta_1); \tag{15}$$

$$-\kappa \frac{\partial (h\theta_1)}{\partial z}\bigg|_{z=0} = \xi h \Big(\beta \theta_1 - Q_0\Big); \qquad \kappa \frac{\partial (h\theta_1)}{\partial z}\bigg|_{z=H} = \xi h \Big(\theta_e - \theta_1\Big). \tag{16}$$

Процесс диффузии субстанции в атмосфере рассмотрим, как задачу Б:

$$\frac{\partial \theta_2}{\partial t} = \mu \left(\frac{\partial^2 (h\theta_2)}{\partial x^2} + \frac{\partial^2 (h\theta_2)}{\partial y^2} \right) + \frac{\partial}{\partial z} \left(\kappa \frac{\partial (h\theta_2)}{\partial z} \right) + \frac{1}{3} \delta Q$$
(17)

с начальным

$$\theta_2^0 = \theta_1^{l+1}; \tag{18}$$

и граничными условиями

$$-\mu \frac{\partial (h\theta_2)}{\partial x}\bigg|_{x=0} = \xi h(\theta_e - \theta_2); \qquad \mu \frac{\partial (h\theta_2)}{\partial x}\bigg|_{x=L_x} = \xi h(\theta_e - \theta_2); \tag{19}$$

$$-\mu \frac{\partial (h\theta_2)}{\partial y}\bigg|_{y=0} = \xi h(\theta_{\scriptscriptstyle \theta} - \theta_2); \qquad \mu \frac{\partial (h\theta_2)}{\partial y}\bigg|_{y=L_y} = \xi h(\theta_{\scriptscriptstyle \theta} - \theta_2); \tag{20}$$

$$-\kappa \frac{\partial (h\theta_2)}{\partial z}\bigg|_{z=0} = \xi h(\beta\theta_2 - Q_0); \quad \kappa \frac{\partial (h\theta_2)}{\partial z}\bigg|_{z=H} = \xi h(\theta_6 - \theta_2). \tag{21}$$

Процесс поглощения частиц в воздушной массе рассмотрим, как задачу ${\bf B}$:

$$\frac{\partial \theta_3}{\partial t} + \sigma h \theta_3 = \frac{1}{3} \delta Q \tag{22}$$

с начальным

$$\theta_3^0 = \theta_2^{\gamma + 1}; \tag{23}$$

и граничными условиями

$$-\mu \frac{\partial (h\theta_3)}{\partial x}\bigg|_{x=0} = \xi h(\theta_{\scriptscriptstyle g} - \theta_3); \qquad \mu \frac{\partial (h\theta_3)}{\partial x}\bigg|_{x=L_x} = \xi h(\theta_{\scriptscriptstyle g} - \theta_3); \tag{24}$$

$$-\mu \frac{\partial (h\theta_3)}{\partial y}\bigg|_{y=0} = \xi h(\theta_e - \theta_3); \qquad \mu \frac{\partial (h\theta_3)}{\partial y}\bigg|_{y=L_y} = \xi h(\theta_e - \theta_3); \tag{25}$$

$$-\kappa \frac{\partial (h\theta_3)}{\partial z}\bigg|_{z=0} = \xi h(\beta\theta_3 - Q_0); \quad \kappa \frac{\partial (h\theta_3)}{\partial z}\bigg|_{z=L_z} = \xi h(\theta_e - \theta_3). \tag{26}$$

Таким образом, после расщепления исходной задачи по физическим процессам получили три подзадачи (9) - (16), (17) - (21) и (22) – (26) которые можно решать независимо друг от друга конечно-разностным методом. Полный вид решения данного задачи переведено в наших работах [12,13].

Для проведения вычислительных экспериментов на компьютере на основе разработанного математический модели и вычислительного алгоритма понадобиться программно- инструментальный комплекс. С помощью данного программного комплекса можно имитировать исследуемый процесс в разных условиях: при неблагоприятных условиях погоды, разных значеньях коэффициента поглощения вредных веществ, по разным физикомеханическим свойств частиц и т.д.

В рамках данного исследования разработан объектно-ориентированный программно-инструментальный комплекс [14], включающий в себя ряд связанных программных средств, разработанных с помощью современных, наиболее широко распространенных технологий, таких как Microsoft Visual Studio (язык С#), Фреймворки Microsoft .NET Framework 4.6.2, наборы библиотек визуализации Ilnumerics и др.

Данное программное обеспечения позволяет осуществлять объектов мониторинг и прогнозирования процесса переноса и диффузии, выброшенных

от промышленных объектов в атмосферу с учётом физико-механическими свойств частиц: масса, плотность, радиус, коэффициент лобового сопротивления, факторы окружающей среды: температура окружающей среды, плотность, вязкость воздуха и другие влияющие факторы в объект целом. Краткий вид схемы работы программного обеспечения показано в рис. 1.

Проведения ВЭ на компьютере можно двумя способами, первое — это ввод всех параметров вручную для проведения ВЭ, второе, выбрать из программного интерфейса соответственно выбрать из данных СУБД. При ручном вводе параметров, нужно выводить следующие значения: скорость и направления ветра, начальные скорости рассматриваемого вредного вещества, мощность источника, коэффициент поглощения вредных веществ, начальная концентрация вредных веществ, коэффициент диффузии, размеры по координатам *х,у,z,* плотность и масса выбранного вредного вещества, коэффициент лобового сопротивления, плотность и вязкость воздуха и время вычисления. В втором способе можно выбрать из БД соответствующие параметры для проведения ВЭ на компьютере.

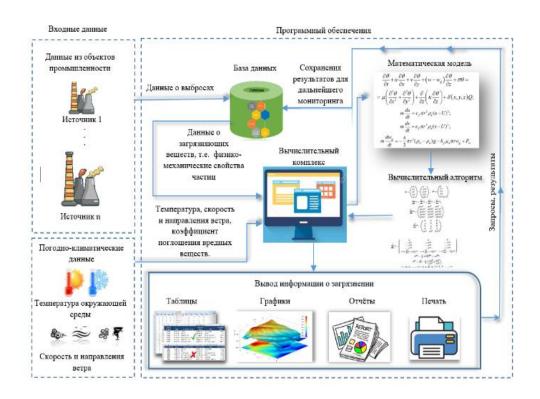


Рис. 1. Краткий вид схемы работы программного обеспечения

Выводы. Численными расчетами установлено, что изменение концентрации аэрозолей в атмосфере существенно зависит от температуры окружающей среды. Этот параметр изменяется от времени года и суток. При изменении температуры окружающей среды изменяется влажность, вязкость и плотность воздуха. Поэтому максимальное поглощение вредных аэрозольных частиц в атмосфере характерно для утреннего и вечернего времени суток.

Из проведенных численных экспериментов установлено, что наиболее существенными параметрами, влияющими на распространение и накопление вредных аэрозольных частиц в атмосфере рассматриваемого региона, являются горизонтальная и вертикальная составляющие скорости рассматриваемых частиц, и их направление, а также скорость воздушного потока. Как можно было ожидать, при умеренном ветре (когда составляющие скорости ветра приближаются к нулю) происходит накопление концентрации вредных веществ вокруг источников выброса и изменение концентрации аэрозольных частиц в атмосфере в основном происходит за счет роста скорости осаждения частиц. Анализ проведенных численных расчетов показали, что при умеренном ветре распространения аэрозольных выбросов в атмосфере происходить за счет диффузионного перемешивание их в атмосфере.

Согласно анализу проведенных расчетов и их сравнению с реальными данными полевых измерений и результатами, полученными другими авторами, разработанные математическое и программное обеспечение в полной мере пригодно для решения задач мониторинга и прогнозирования загрязнения атмосферы в промышленных зонах, на территориях с неблагоприятной экологической ситуацией, а также для определения концентрации токсичных веществ в атмосферном воздухе и на подстилающей поверхности.

Список литературы:

- 1. Шилин А.В. Разработка математического и программного обеспечения системы оценки загрязнения атмосферного воздуха выброса автомобильного транспорта: автореф. дис. ... канд. тех. наук. Рязан, 2005.
- 2. Aminov S. et al. Numerical Study of Salt-Transfer Process in Soils // Int. J. Adv. Trends

- Comput. Sci. Eng. 2020. Vol. 9, № 5. P. 8469–8473.
- 3. Ravshanov N., Ravshanov Z., Bolnokin V.E. Modeling the salt-dust aerosols distribution in the atmosphere, taking into account the soil erosion // IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing, 2020. Vol. 862, № 6. P. 1–7.
- 4. Ravshanov Z., Abdullaeva B., Kubyashev K. Conjugated mathematical model for optimal location of industrial objects // IOP Conference Series: Materials Science and Engineering. 2020.
- Ravshanov N., Zafar A., Shafiyev T. Mathematical model and numerical algortm to study the
 process of aerosol particles distribution in the atmosphere // International Conference on
 Information Science and Communications Technologies: Applications, Trends and
 Opportunities, ICISCT 2019. Institute of Electrical and Electronics Engineers Inc., 2019.
- 6. Ravshanov N., Shafiev T.R. Nonlinear mathematical model for monitoring and predicting the process of transfer and diffusion of fine-dispersed aerosol particles in the atmosphere // J. Phys. Conf. Ser. 2019. Vol. 1260, № 10.
- 7. Яненко Н.Н. Метод дробных шагов решения многомерных задач математической физики. изд. «Наука», 1967. 196 с.
- 8. Самарский А.А. О принципе аддитивности для построения экономичных разностных схем // Докл. АН СССР. 1965. № 6. С. 226–232.
- 9. Марчук Г.И. Методы расщепления. М: Наука, 1988. 263 с.
- Воеводин А.Ф., Гончарова О.Н. Метод расчета двумерных задач конвекции на основе расщепления по физическим процессам // Вычислительные технологии. 2002. № 1 (7). С. 69–75.
- 11. Ravshanov N., Muradov F.A., Akhmedov D. Operator splitting method for numerical solving the atmospheric pollutant dispersion problem // Journal of Physics: Conference Series, Volume 1441, XIII International Scientific and Technical Conference "Applied Mechanics and Systems Dynamics." Omsk, 2019. P. 5–7.
- 12. Shafiev T. et al. Nonlinear mathematical model and numerical algorithm for monitoring and predicting the concentration of harmful substances in the atmosphere // E3S Web Conf. 2021. Vol. 264, № 01021. P. 1–12.
- 13. Ravshanov N., Shafiev T.R. Numerical study process distribution of contaminated substances in the atmosphere taking into account the physical and mechanical properties of particles // Bull. TUIT Manag. Commun. Technol. 2021. Vol. 4, № 2(46). P. 10–15.
- 14. Шафиев Т.Р., Атаева Г.И., Суюнов М.М. Математическая модель, эффективный численный алгоритм и программный комплекс для мониторинга и прогнозирования концентрации вредных веществ в атмосфере с учётом физико-механических свойств частиц // Muhammad alXorazmiy avlodlari. 2021. № 1(15). С. 126–130.