MSC2010: 35P20, 47N50

Point spectrum of the operator matrices with the Fredholm integral operators Abdullaeva Mukhayyokhon

Bukhara State University, Bukhara, Uzbekistan; abdullayevamuhayyo9598@gmail.com

In mathematics, Fredholm operators are certain operators that arise in the Fredholm theory of integral equations. They are named in honour of Erik Ivar Fredholm.

A linear operator A from a Banach space X to a Banach space Y is called a Fredholm operator if

1. A is closed;

2. the domain $D(\mathcal{A})$ of $\mathcal A$ is dense in X;

3. $\alpha(\mathcal{A})$, the dimension of the null space $N(\mathcal{A})$ of \mathcal{A} , is finite;

4. $R(\mathcal{A})$, the range of \mathcal{A} , is closed in Y;

5. $\beta(\mathcal{A})$, the codimension of $R(\mathcal{A})$ in Y, is finite.

In particular, on the spaces $C[a; b]$ or $L_2[a; b]$ an operator of the form

$$
(\mathcal{A}\phi)(x) = \int_{a}^{b} K(x,t)\phi(t)dt,\tag{1}
$$

where the kernel $K(\cdot, \cdot)$ is continuous and hence square-integrable function on [a; b] \times [a; b], is Fredholm. The operator of the form (1) is also called a linear Fredholm integral operator with the kernel $K(\cdot, \cdot)$. In the present note we considered the case where the kernel $K(\cdot, \cdot)$ is degenerate.

Let \mathbb{T}^d be the d-dimensional torus and $L_2(\mathbb{T}^d)$ be the Hilbert space of square integrable symmetric (complex) functions defined on \mathbb{T}^d .

In the Hilbert space $L_2(\mathbb{T}^d)$ we consider the Fredholm integral operators of the form

$$
(A_{ij}f_j)(x) = a_{ji}(x) \int_{\mathbb{T}^d} a_{ij}(t) f_j(t) dt, \quad f_i \in L_2(\mathbb{T}^d), \quad i \le j, \quad i, j = 1, 2, 3,
$$

where $a_{ij}(\cdot)$, $i, j = 1, 2, 3$ are the real-valued continuous functions on \mathbb{T}^d . Then it is easy to see that $A_{ij}^* = A_{ji}$ for all $i, j = 1, 2, 3$.

First we investigate the spectrum of $\mathcal{A}_1 := A_{11}$. Direct calculations show that the operator \mathcal{A}_1 has a purely point spectrum and the equality $\sigma_{\rm pp}(\mathcal{A}_1) = \{0, ||a_{11}||^2\}$ holds, where the number $\lambda = 0$ is an eigenvalue of \mathcal{A}_1 with infinite multiplicity, the number $\lambda = ||a_{11}||^2$ is a simple eigenvalue of \mathcal{A}_1 .

For the further discussions we denote

$$
L_2^{(2)}(\mathbb{T}^d) := \{ f = (f_1, f_2) : f_\alpha \in L_2(\mathbb{T}^d), \alpha = 1, 2 \},
$$

$$
L_2^{(3)}(\mathbb{T}^d) := \{ f = (f_1, f_2, f_3) : f_\alpha \in L_2(\mathbb{T}^d), \alpha = 1, 2, 3 \}.
$$

Notice that the norm and scalar product in $L_2^{(3)}(\mathbb{T}^d)$ are defined as

$$
||f|| = \left(\int_{\mathbb{T}^d} |f_1(t)|^2 dt + \int_{\mathbb{T}^d} |f_2(t)|^2 dt + \int_{\mathbb{T}^d} |f_3(t)|^2 dt\right)^{1/2};
$$

$$
(f,g) = \int_{\mathbb{T}^d} f_1(t)\overline{g_1(t)}dt + \int_{\mathbb{T}^d} f_2(t)\overline{g_2(t)}dt + \int_{\mathbb{T}^d} f_3(t)\overline{g_3(t)}dt
$$

for $f = (f_1, f_2, f_3), g = (g_1, g_2, g_3) \in L_2^{(3)}(\mathbb{T}^d)$.

For $n=2,3$ in the Hilbert space $L_2^{(n)}(\mathbb{T}^d)$ we consider the following $n \times n$ operator matrix

$$
\mathcal{A}_2 := \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right), \quad \mathcal{A}_3 := \left(\begin{array}{cc} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{array} \right).
$$

Under these assumptions the operator matrix \mathcal{A}_{α} is bounded and self-adjoint in $L_2^{(\alpha)}(\mathbb{T}^d)$ for $\alpha = 2,3$.

Operators of this type are arise in the process of constructing the Faddeev equations for the eigenfunctions of the model operators corresponding to the Hamiltonians of a three-particle system on a lattice [1,2].

Note that all matrix elements A_{ij} of A_3 are one-dimensional operators, and hence depending on the functions $a_{ij}(\cdot), i, j = 1, 2, 3$ the operator matrix \mathcal{A}_3 is an at most 9-dimensional operator. Analogously, the operator matrix \mathcal{A}_2 is an at most 4-dimensional operator. Since $L_2(\mathbb{T}^d)$, $L_2^{(2)}(\mathbb{T}^d)$ and $L_2^{(3)}(\mathbb{T}^d)$ are the infinite-dimensional Hilbert spaces, that is,

$$
\dim L_2(\mathbb{T}^d) = \dim L_2^{(2)}(\mathbb{T}^d) = \dim L_2^{(3)}(\mathbb{T}^d) = \infty,
$$

the equalities hold:

$$
\sigma_{\rm ess}(\mathcal{A}_1)=\sigma_{\rm ess}(\mathcal{A}_2)=\sigma_{\rm ess}(\mathcal{A}_3)=\{0\}.
$$

To study the non zero eigenvalues of the operator matrices A_{α} , $\alpha = 2, 3$ we introduce the following functions:

$$
\Delta_2(\lambda) := \begin{vmatrix}\n\Delta_{11}(\lambda) & \Delta_{12} & 0 & 0 \\
0 & \Delta_{22}(\lambda) & \Delta_{14} & \Delta_{15} \\
\Delta_{12} & \Delta_{42} & \Delta_{33}(\lambda) & 0 \\
0 & 0 & \Delta_{25} & \Delta_{44}(\lambda)\n\end{vmatrix},
$$
\n
$$
\Delta(\lambda) := \begin{vmatrix}\n\Delta_{11}(\lambda) & \Delta_{12} & \cdots & \Delta_{19} \\
\Delta_{21} & \Delta_{22}(\lambda) & \cdots & \Delta_{29} \\
\vdots & \vdots & \ddots & \vdots \\
\Delta_{91} & \Delta_{92} & \cdots & \Delta_{99}(\lambda)\n\end{vmatrix},
$$

where the matrix elements are defined by

$$
\Delta_{11}(\lambda) := \|a_{11}\|^2 - \lambda, \quad \Delta_{12} := (a_{11}, a_{21}), \quad \Delta_{13} := (a_{11}, a_{31});
$$

\n
$$
\Delta_{22}(\lambda) := -\lambda, \quad \Delta_{24} := \|a_{12}\|^2, \quad \Delta_{25} := (a_{12}, a_{22}), \quad \Delta_{26} := (a_{12}, a_{32});
$$

\n
$$
\Delta_{33}(\lambda) := -\lambda, \quad \Delta_{37} := \|a_{13}\|^2, \quad \Delta_{38} := (a_{13}, a_{23}), \quad \Delta_{39} := (a_{13}, a_{33});
$$

\n
$$
\Delta_{41} := (a_{21}, a_{11}), \quad \Delta_{42} := \|a_{21}\|^2, \quad \Delta_{43} := (a_{21}, a_{31}), \quad \Delta_{44}(\lambda) := -\lambda;
$$

\n
$$
\Delta_{54} := (a_{22}, a_{12}), \quad \Delta_{55} := \|a_{22}\|^2 - \lambda, \quad \Delta_{56} := (a_{22}, a_{32});
$$

\n
$$
\Delta_{66}(\lambda) := -\lambda, \quad \Delta_{67} := (a_{23}, a_{13}), \quad \Delta_{68} := \|a_{23}\|^2, \quad \Delta_{69} := (a_{23}, a_{33});
$$

\n
$$
\Delta_{71} := (a_{31}, a_{11}), \quad \Delta_{72} := (a_{31}, a_{21}), \quad \Delta_{73} := \|a_{31}\|^2, \quad \Delta_{77}(\lambda) := -\lambda;
$$

\n
$$
\Delta_{84} := (a_{32}, a_{12}), \quad \Delta_{85} := (a_{32}, a_{22}), \quad \Delta_{86} := \|a_{32}\|^2, \quad \Delta_{88}(\lambda) := -\lambda;
$$

\n
$$
\Delta_{97} := (a_{33}, a_{13}), \quad \Delta_{98} := (a_{33}, a_{23}), \quad \Delta_{86} := \|a_{32}\|^2, \quad \Delta_{99}(\lambda) := \|a_{33}\|^2 - \lambda;
$$

\n
$$
\Delta_{ij} = 0, \quad \text{otherwise.}
$$

In the following theorem we describe the point spectrum of A_{α} , $\alpha = 2, 3$.

Theorem 1. For $\alpha = 2, 3$ the operator matrix \mathcal{A}_{α} has a purely point spectrum and

$$
\sigma_{\rm pp}(\mathcal{A}_{\alpha}) = \{0\} \cup \{\lambda \in \mathbb{R} : \Delta_{\alpha}(\lambda) = 0\}.
$$

Moreover, the number $\lambda = 0$ is an eigenvalue of A_{α} with infinite multiplicity.

It can be seen that the function $\Delta_2(\cdot)$ is a polynomial of order 4 with respect to λ . Therefore, it has at most 4 real zeros (taking into account the multiplicity). Therefore, by virtue of Theorem 1, an operator matrix A_2 can have at most 4 (taking into account the multiplicity) eigenvalues with finite multiplicity. Analogously, an operator matrix A_3 can have at most 9 (taking into account the multiplicity) eigenvalues with finite multiplicity.

Using Theorem 1 and the fact about $\sigma_{\text{pp}}(A_1)$ it is possible to find an exact representation of the numerical range of the operator A_{α} , $\alpha = 1, 2, 3$. It should be noted that since the operator A_{α} , $\alpha = 1, 2, 3$ has a purely point spectrum, its numerical range $W(\mathcal{A}_{\alpha})$ always a bounded (closed) segment and for $\alpha = 1, 2, 3$ the equality

$$
W(\mathcal{A}_{\alpha}) = [\min \sigma_{\text{pp}}(\mathcal{A}_{\alpha}); \max \sigma_{\text{pp}}(\mathcal{A}_{\alpha})]
$$

is valid. In particular, we have $W(A_1) = [0; ||a_{11}||^2]$. The study of quadratic numerical range of A_2 and cubic numerical range of A_3 needs an additional investigations.

Reference

- 1. S. Albeverio, S.N. Lakaev, Z.I. Muminov. On the number of eigenvalues of a model operator associated to a system of three-particles on lattices, Russ. J. Math. Phys., 14:4 (2007), 377–387.
- 2. T.H. Rasulov. Essential spectrum of a model operator associated with a three-particle system on a lattice, Theoret. and Math. Phys., 166:1 (2011), pp. 81–93.