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In mathematics, Fredholm operators are certain operators that arise in the Fredholm theory of integral
equations. They are named in honour of Erik Ivar Fredholm.

A linear operator A from a Banach space X to a Banach space Y is called a Fredholm operator if
1. A is closed;
2. the domain D(A) of A is dense in X;
3. α(A), the dimension of the null space N(A) of A, is finite;
4. R(A), the range of A, is closed in Y ;
5. β(A), the codimension of R(A) in Y , is finite.
In particular, on the spaces C[a; b] or L2[a; b] an operator of the form

(Aφ)(x) =

∫ b

a

K(x, t)φ(t)dt, (1)

where the kernel K(·, ·) is continuous and hence square-integrable function on [a; b] × [a; b], is Fredholm. The
operator of the form (1) is also called a linear Fredholm integral operator with the kernel K(·, ·). In the present
note we considered the case where the kernel K(·, ·) is degenerate.

Let Td be the d-dimensional torus and L2(Td) be the Hilbert space of square integrable symmetric (complex)
functions defined on Td.

In the Hilbert space L2(Td) we consider the Fredholm integral operators of the form

(Aijfj)(x) = aji(x)

∫
Td

aij(t)fj(t)dt, fi ∈ L2(Td), i ≤ j, i, j = 1, 2, 3,

where aij(·), i, j = 1, 2, 3 are the real-valued continuous functions on Td. Then it is easy to see that A∗
ij = Aji

for all i, j = 1, 2, 3.
First we investigate the spectrum of A1 := A11. Direct calculations show that the operator A1 has a purely

point spectrum and the equality σpp(A1) = {0, ‖a11‖2} holds, where the number λ = 0 is an eigenvalue of A1

with infinite multiplicity, the number λ = ‖a11‖2 is a simple eigenvalue of A1.
For the further discussions we denote

L
(2)
2 (Td) := {f = (f1, f2) : fα ∈ L2(Td), α = 1, 2},

L
(3)
2 (Td) := {f = (f1, f2, f3) : fα ∈ L2(Td), α = 1, 2, 3}.

Notice that the norm and scalar product in L(3)
2 (Td) are defined as

‖f‖ =

(∫
Td

|f1(t)|2dt+

∫
Td

|f2(t)|2dt+

∫
Td

|f3(t)|2dt
)1/2

;

(f, g) =

∫
Td

f1(t)g1(t)dt+

∫
Td

f2(t)g2(t)dt+

∫
Td

f3(t)g3(t)dt

for f = (f1, f2, f3), g = (g1, g2, g3) ∈ L(3)
2 (Td).

For n = 2, 3 in the Hilbert space L(n)
2 (Td) we consider the following n× n operator matrix

A2 :=

(
A11 A12

A21 A22

)
, A3 :=

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 .

Under these assumptions the operator matrix Aα is bounded and self-adjoint in L(α)
2 (Td) for α = 2, 3.

Operators of this type are arise in the process of constructing the Faddeev equations for the eigenfunctions
of the model operators corresponding to the Hamiltonians of a three-particle system on a lattice [1,2].
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Note that all matrix elements Aij of A3 are one-dimensional operators, and hence depending on the functions
aij(·), i, j = 1, 2, 3 the operator matrix A3 is an at most 9-dimensional operator. Analogously, the operator
matrix A2 is an at most 4-dimensional operator. Since L2(Td), L(2)

2 (Td) and L(3)
2 (Td) are the infinite-dimensional

Hilbert spaces, that is,
dimL2(Td) = dimL

(2)
2 (Td) = dimL

(3)
2 (Td) =∞,

the equalities hold:
σess(A1) = σess(A2) = σess(A3) = {0}.

To study the non zero eigenvalues of the operator matrices Aα, α = 2, 3 we introduce the following functions:

∆2(λ) :=

∣∣∣∣∣∣∣∣
∆11(λ) ∆12 0 0

0 ∆22(λ) ∆14 ∆15

∆12 ∆42 ∆33(λ) 0
0 0 ∆25 ∆44(λ)

∣∣∣∣∣∣∣∣ ,

∆(λ) :=

∣∣∣∣∣∣∣∣∣
∆11(λ) ∆12 · · · ∆19

∆21 ∆22(λ) · · · ∆29

...
...

. . .
...

∆91 ∆92 · · · ∆99(λ)

∣∣∣∣∣∣∣∣∣ ,
where the matrix elements are defined by

∆11(λ) := ‖a11‖2 − λ, ∆12 := (a11, a21), ∆13 := (a11, a31);

∆22(λ) := −λ, ∆24 := ‖a12‖2, ∆25 := (a12, a22), ∆26 := (a12, a32);

∆33(λ) := −λ, ∆37 := ‖a13‖2, ∆38 := (a13, a23), ∆39 := (a13, a33);

∆41 := (a21, a11), ∆42 := ‖a21‖2, ∆43 := (a21, a31), ∆44(λ) := −λ;

∆54 := (a22, a12), ∆55 := ‖a22‖2 − λ, ∆56 := (a22, a32);

∆66(λ) := −λ, ∆67 := (a23, a13), ∆68 := ‖a23‖2, ∆69 := (a23, a33);

∆71 := (a31, a11), ∆72 := (a31, a21), ∆73 := ‖a31‖2, ∆77(λ) := −λ;

∆84 := (a32, a12), ∆85 := (a32, a22), ∆86 := ‖a32‖2, ∆88(λ) := −λ;

∆97 := (a33, a13), ∆98 := (a33, a23), ∆86 := ‖a32‖2, ∆99(λ) := ‖a33‖2 − λ
∆ij = 0, otherwise.

In the following theorem we describe the point spectrum of Aα, α = 2, 3.

Theorem 1. For α = 2, 3 the operator matrix Aα has a purely point spectrum and

σpp(Aα) = {0} ∪ {λ ∈ R : ∆α(λ) = 0}.

Moreover, the number λ = 0 is an eigenvalue of Aα with infinite multiplicity.
It can be seen that the function ∆2(·) is a polynomial of order 4 with respect to λ. Therefore, it has at most

4 real zeros (taking into account the multiplicity). Therefore, by virtue of Theorem 1, an operator matrix A2

can have at most 4 (taking into account the multiplicity) eigenvalues with finite multiplicity. Analogously, an
operator matrix A3 can have at most 9 (taking into account the multiplicity) eigenvalues with finite multiplicity.

Using Theorem 1 and the fact about σpp(A1) it is possible to find an exact representation of the numerical
range of the operator Aα, α = 1, 2, 3. It should be noted that since the operator Aα, α = 1, 2, 3 has a purely
point spectrum, its numerical range W (Aα) always a bounded (closed) segment and for α = 1, 2, 3 the equality

W (Aα) = [minσpp(Aα); maxσpp(Aα)]

is valid. In particular, we have W (A1) =
[
0; ‖a11‖2

]
. The study of quadratic numerical range of A2 and cubic

numerical range of A3 needs an additional investigations.
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