

материалы Международной научно-практической конференции

Ташкент, 17-18 марта 2023 г.

FP-99. СИНТЕЗ ПОЛИАРЕНАМИДОФОСФИТОВ И ПОЛИАРЕНФЕНИЛФОСФОНИТОВ

Блохин Юрий Иванович,

доктор химических наук, профессор, заведующий кафедрой химии имени профессоров С.И.Афонского и А.Г.Малахова ФГБОУ ВО «Московская государственная академия ветеринарной медицины и биотехнологии – МВА имени К.И.Скрябина»

Эргашов Мансур Ярашович,

кандидат химических наук, профессор кафедры органической и физколлоидной химии «Бухарский государственный университет».

Разработан эффективный метод синтеза полимерных аренамидофосфитов и аренфенилфосфонитов путем конденсации амидов кислот трехвалентного фосфора с двухатомными фенолами. Строения полученных новых полимерных продуктов изучено разными физикохимическими методами.

Ключевые слова: поликонденсация, фенолы, амиды, полимеры, спектры, полиэфиры, дифракция, термогравиметрия.

До начала нашего исследования предпринимались попытки синтеза фосфор(III)содержащих полиэфиров без строгого доказательства их строения и указания характерных условий реакции [1].

Для получения полимерных аренамидофосфитов и аренфенилфосфонитов разработан простой и эффективный метод синтеза — фенолизом амидов кислот трехвалентного фосфора (фосфористой и фенилфосфонистой) при эквимолярных соотношениях реагентов [2-4]:

Этот метод позволяет интезировать высоком іскулярные фосфор(III)ареновые соединения с выходами, близкими к количественным. Следовательно, разработанный метод актуален как для препаративной, так и для приклачной химии.

По сравнению с полимеризационными процессами, протекающими в присутствии катализаторов, разработанные методы поликонденсации осуществляются без инициирующих добавок. При этом выделяющийся низкокипящий диэтиламин легко и полностью удаляется из реакционной среды в слабом вакууме (20+30 мм. рт. ст.), не загрязняя тем самым полученный полимер.

Синтезированные полиэфиры 1-9 представляют собой прозрачные вещества разной твердости, растворяются в органических растворителях значительно труднее, чем их соответствующие олигомерные производные.

С целью оптимизации технологии эти реакции проводились в без растворителя. Установлено, что при выдерживании найденных условий (температура 120°C, в течение атмосфере сухого инертного осуществляется направленно, так как спектрометрическими методами идентифицируется образование только полимерного Одновременно выявлено, что при температуре ниже оптимальной поликонденсация замедляется, а при более высокой - образующиеся растворяются практически не органических растворителях, что свидетельствует, очевидно, об их сшитых структурах.

В спектрах $\mathcal{F}MP^{31}P$ каждого из синтезированных полиэфиров **? 1-9** содержится один синглетный сигнал в области 141.0-159.6 м.д. (табл.).

Фундаментальные и практические аспекты функциональных полимеров

Таблица Основные характеристики полиаренамидофосфатов и полиаренфенилфосфонитов

Соедине	Т _{разм.,} ° С	Найд	Спектр			
ния			$\mathcal{A}MP^{31}P$			
		M_w	M_v	n_w	n_v	$\boldsymbol{\delta}_p$, $\boldsymbol{\mathcal{M}}.\partial$.
				$= M_w$	$= M_v$,
				$/w^*$	$/w^*$	
1	102-104	44000	42000	146	139	141.0
2	116-118	21000	20000	100	95	142.2
3	128-130	90000	89000	273	269	141.0
4	112-114	37000	36000	128	125	141.0
5	110-112	53000	51000	201	194	141.3
6	99-101	39000	38000	148	144	141.3
7	87-90	23000	22000	106	102	158.9
8	120-123	82000	80000	245	239	157.5
9	114-117	18000	17000	67	64	159.6

 w^* - масса мономерного звена.

В протонных спектрах полимерных производных фосфористой кислоты содержатся сигналы всех групп атомов водорода при теоретическом соотношении интенсивностей их линий. Так, в спектре полиаренамидофосфита 2 имеются: триплетный сигнал метильной группы δ 1.05 м.д. (${}^{3}I_{HH}$ 7.0 Γ ц) и мультиплет с δ 3.31 м.д. $(^{3}I_{HP}$ 9.5/10.3 Гц) метиленовой группы при атоме азота, а также два дублета δ 7.16 и 7.54 м.д. (${}^{3}I_{HH}$ 6.7 Гц) протонов аренового фрагмента, значение КССВ которых согласуется с литературными данными [5]. Наличие двух констант спин-спинового взаимодействия объясняется, вероятно, магнитной неэквивалентностью протонов этильных групп при атоме азота, вызванной заторможенным вращением вокруг связи Р-N. Протонный спектр полиаренфенилфосфонита 7 характеризуется наличием трех мультиплетов δ 7.73 м.д., 7.48 м.д., 7.06 м.д. (м-, o-, п-) протонов фенильного заместителя при атоме фосфора, а также двух дублетов δ 7.21 м.д. и 7.58 м.д. (${}^{3}I_{HH}$ 6.8 Γ ц) протонов гидрохинонового (аренового) фрагмента.

В ИК-спектрах синтезированных полиэфиров наблюдаются полосы поглощения 1190, 870 см $^{-1}$ **2** и 1180, 865 см $^{-1}$ **7**, соответствующие колебаниям связи Р-О-С (аром.) [6], 1435 см $^{-1}$ **7**,

характерная для грунпировки P-C (арил.) [7], а также низкочастотная - 930 см^{-1} 2, отвечающая фрагменту P-N [6].

Найденные значения средневесовых (М , и средневязкостных (М_n) молекулярных масс для синтезированных соединений 1-9 свидетельствуют об их полимерной природе (см. табл.).

Согласно данным таблицы, полученные разными методами значения М_w и М_v температуры размягчения их в целом невысокие, что указывает, вероятно, на гибкость макромолекулярных цепей [8]. Методом дифракции рентгеновских лучей установлены структуры синтезированных производных полимерных фосфористой фенилфосфонистой кислот. При этом показано, что исследованный, например, полиаренамидофосфит 3 имеет аморфную структуру, которая по сравнению с кристаллической (системой резких колец) содержит на полученной рентгенограмме одно характерное размытое кольцо (рис.1). Полученные данные о структуре фосфор(III)ареновых полимеров находятся в соответствии с найденными для них невысокими значениями температуры размягчения (табл.). Выявлено, что среднее расстояние между осями соседних сегментов макроцепей в исследуемых полиэфирах составляет около 5Å.

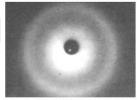


рис. 1. Рентгенограмма полиаренамидофосфита 3.

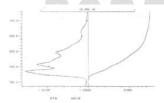


рис. 2. Термогравиметрическая характеристика полиаренамидофосфита 3.

Для синтезированных фосфор(III)ареновых полимеров проведено термогравиметрическое исследование. Так, на рис.2 показано уменьшение массы образца 3 в зависимости от повышения температуры. Причем, основные деструктивные процессы в полимере происходят в интервале температур 200-490°C, и на относительно небольшом участке повышения температуры от 408-490°С идет значительная потеря массы образца, достигая 22%.

Следовательно, в зависимости от температуры потеря массы полиэфира 3 происходит с переменной скоростью, что определяется, очевидно, разной энергией связей в его молекуле.

полимерных аренамидофосфитов И аренфенилфосфонитов 1-9 осуществлялись в найденных условиях без растворителя (в блоке). Синтез фосфор(III)ареновых полиэфиров без растворителя обусловлен также и селективностью реакции. В

1.7-нафталиола частности. при взаимодействии, например, гексаэтилтриамидом фосфористой кислоты эквимолярных В соотношениях реагентов и в среде о-ксилола, согласно данным массспектрометрии (ионизация осколками деления калифорния-252), наряду с полимерным продуктом 6 (m/z 43725) образуется примесь бисфосфамида (m/z)523). которой наличие подтверждается спектроскопией ЯМР³¹Р.

Исследования показали, что также нестрого проходит поликонденсация в растворе между 1,7-нафтадиолом и диамидом фенилфосфонистой кислоты.

Таким образом, экспериментальные данные подтверждают найденные оптимальные условия поликонденсаций двухатомных фенолов с триамидами фосфористой и диамидами фенилфосфонистой кислот, протекающих селективно без растворителя.

- 1. Петров К.А., Евдаков В.П., Билевич К.А., Косырев Ю.С., Радченко В.П. //Высокомол. соед. 1964. Т.б. №1. С. 10-12.
- 2. Нифантьев Э.Е., Блохин Ю.И., Эргашов М.Я., Твердохлебова И.И. // Изв. АН СССР. Сер. хим. 1991. №5, С. 1198-1201.
- 3. Эргашов М.Я. // Дисс. канд. хим. наук. М.:МПГУ, 1993. 90с.
- Галиаскарова Ф.М. // Дисс. канд. хим. наук. М.:МПГУ, 1997. 104с.
- 5. Жунке А. Ядерный магнитный резонанс в органической химии. М.: Мир, 1974. 176с.
- 6. Смит А. Прикладная ИК-спектроскопия. М.: Мир, 1982. 328 с.
- Казицына Л.А., Куплетская Н.Б. Применение УФ-, ИК-, ЯМР- и масс-спектроскопии в органической химии. М.:МГУ,1979. 240 с.
- 8. Твердохдебова И.И. Конформация макромолекул. М.: Химия, 1981. 284 с.

	D.A.				odgorov, D.A.Ma	
→ -	FP-96.	OBTAINING T	HERMOPLASTIC	STARCH USING	S A 3D PRINTER	411
_/	[⊢] Mir	zoirova Viole	tta Alievna		9-7	- %
	Mul	khamediev N	1ukhtar Gani	evich		
	FP-97.		ИАРЕНАМИДО	ОСФИТОВ И	ПОЛИАРЕНФЕНИЛФ	ОСФОНИТОВ
	_	414				
		хин Юрий И	•			
	•		р Ярашович			
	FP-98.	419			H-1,2,4-TRIAZOL-5-A	
			-		v U.O., Xayrullay	rev G`.U.,
			, Razzoqova .			
	FP-99.				РБЕНТ АНАЛИТИЧЕСКО	
						422
		дусманова Н				
	-	радхамова І	.У.			
		биев А.А.				
	•	урова Д.А.			•	
	FP-100.				іной композициі	
			гевна Кыды <u>р</u>			420
		•	гевни пыоыр	илиеви		
		торант,	кович Бейсен	5000	- 20	23
				Юиев		
		.н., професс				
			вна Надиров	а		
		.н, доцент,				
			повна Исмаі	<i>илова</i>		
	-	подавател				
			ирович Иба <i>д</i>	уллаев		
		.н.,професс	-			
	FP-101.		YALANGAN SHO	LI QOBIGʻIGA (CU ²⁺ IONLARINING YU	
		ASI			C	432
			-		ov Sunnatjon Xu	aoyberai
	o g	II, Bekchano	v Davron Jum	azarovicn		
	СЕКЦИЯ	№3: ПРАКТ	ические ас	ПЕКТЫ АН	АЛИЗА ПОЛИМ	ЕРНЫХ
	МАТЕРИ	ІАЛОВ				436
	ED 102	фильтры п		つれつつかやモルエバ	ІВНЫМ СОРБЕНТОМ	ı D
			обменными Обменными			£4 37
		•			К.³, Жантикеев	3 Y.E. ³ ,
>		каров Е. ^{1,2}	,		<i>a-/</i>	10
			A. SOME APPLICAT	IONS OF NANOC	ARBON MATERIALS FOR	NOVEL DEVICES /
					s, Springer, 2006. P. 3	
	0	. (0	9	- I	2 1	<i>(</i>
		>		6	0,0	1009

