SOME GUIDELINES FOR TEACHING THE SUBJECT OF ABSOLUTE CONTINUOUS FUNCTIONS
Main Article Content
Abstract
The article provides detailed information about the class of absolutely
continuous functions, which is the main branch of calculus. Two definitions of absolutely
continuous functions are given separately and their equivalence is proved. A number of
properties are given, and the proofs of some of them are explained. The main problems that arise
when explaining the subject to students are identified, and methodological guidelines for
"Pedagogik akmeologiya" xalqaro ilmiy-metodik jurnali maxsus son, 2022
169
teaching it are recommended. Examples are given of continuous and absolutely continuous
functions, as well as functions of continuous and not absolutely continuous.
Article Details
References
Rasulov, X. (2022). Краевые задачи для квазилинейных уравнений смешанного типа с двумя линиями вырождения. Центр научных публикаций (buxdu.Uz), 8(8).
Никольский С.М. Курс математического анализа, 2-том, Москва, Наука, 1983 г., 448 с.
Интернет манба: https://ru.wikipedia.org/wiki/Абсолютная_непрерывность.
Турдиев Н.Ш., Асадов Ю.М., Акбарова С.Н., Темиров Д.Ш. Умумий ўрта таълим тизимида ўқувчиларнинг компетенцияларини шакллантиришга йўналтирилган таълим технологиялари. Қори Ниёзий номидаги Ўзбекистон педагогика фанлари илмий-тадқиқот
институти,Тошкент, 2015 й., 160 б.
Rasulov Kh.R., Sayfullayeva Sh.Sh. Analysis of Some Boundary Value Problems for Mixed-Type Equations with Two Lines of Degeneracy // Irish Interdisciplinary Journal of Science & Research (IIJSR), 6:2 (2022), p. 8-14. DOI: http://doi.org/10.46759/IIJSR.2022.6202.
Самко С.Г., Килбас А.А., МаричевО.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск, «Наука и техника», 1987 г., 688 с.
Farmakis I., Moskowitz M. Fixed Point Theorems and Their Applications. City University of New York, USA, 2013 y., p. 234.
Internet manba: www.buxdu.uz.
Xaydar R. Rasulov. On the solvability of a boundary value problem for a quasilinear equation of mixed type with two degeneration lines // Journal of Physics: Conference Series 2070 012002 (2021), pp.1–11.
Расулов Х.Р. (1996). Задача Дирихле для квазилинейного уравнения эллиптического типа с двумя линиями вырождения // ДАН Республики Узбекистан, №12, с.12-16.
Rasulov Kh.R. (2018). On a continuous time F - quadratic dynamical system // Uzbek Mathematical Journal, №4, pp.126-131.
Rasulov X.R. (2020). Boundary value problem for a quasilinear elliptic equation with two perpendicular line of degeneration // Uzbek Mathematical Journal, №3, pp.117-125.