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EXACT AND NATURAL SCIENCES

UDC: 517.956

ANALYSIS OF THE 1D FRACTIONAL DIFFUSION EQUATION WITH
INITIAL-BOUNDARY PROBLEM
Raxmatova Nigora Jamshid gizi
Master of Bukhara State University
rakhmatovanigora99@gmail.com

Abstract. In this paper, we consider one-dimensional time-fractional diffusion equation is bounded
domain. In this work, we have seen the existence of a solution of the 1st initial boundary value problem for
the one-dimensional diffusion equation. It is proved that the solution of problem (1)-(5) exists and is unique.
First, we give a definition of the classical solution of the direct problem. Then we studied its features. In the
process of solving the equation, we used Foure's method, Mittag-Liffler function, Caputo fractional
derivatives, Laplace transforms for Caputo fractional derivative. Finally, we directly show that the solution
of the problem exists and is unique.

Keywords: fractional diffusion equation; Caputo fractional derivative; Fourier method; Mittag-Leffler
function.

Introduction and problem statements.  Fractional diffusion equations are more adequate than
integer-order models for describing anomalous diffusion phenomena because fractional order derivatives
enable the description of memory and hereditary properties of heterogeneous substances [2, 3]. For the last
few decades, fractional diffusion equations have attracted great attention not only from mathematicians and
engineers but also from many scientists from fields like biology, physics, chemistry and biochemistry,
medicine and finance [3-8]. The time fractional diffusion equations arise when replacing the standard time
derivative with time fractional derivatives and can be used to describe super diffusion and sub diffusion
phenomena [2, 9-11]. Direct problems, i.e. well-posed initial value problems (Cauchy problem), initial
boundary value problems for time-fractional diffusion equations, have attracted much more attention in
recent years, for instance, on some unigueness and existence results we refer readers to works [12-19] and on
exact solutions of these problems to [20-21]. However, in some practical situations, a part of boundary data,
or initial data, or diffusion coefficient, or source term may not be given and we want to find them by
additional measurement data which will yield some fractional diffusion inverse problems. Zheng and Wei in
[22, 24] solved the Cauchy problems for the time fractional diffusion equations on a strip domain by a
Fourier truncation method and a convolution regularization method. In this paper, we consider one-
dimensional time-fractional diffusion equation is bounded domain.

Consider the following one-dimensional time-fractional diffusion equation:

Ofu(x, t) — Uy, (x,t) = f(x, 1), (x,t) € Q, Q)
In the rectangular
Q={(xt):0<x<0<t<T}
Now, we give definition of direct problem for Eq. (1). Find in the domain Q a function u(x, t) such that

u(x,t) € Q) N CF*(); 2)
Lu=f(xt), (x1t)e; ©)
u(x,0) =¢pkx), 0<x<[,0<t<T, 4)
u(0,t) =u(l,t) =0, 0<t<T, ()

where ¢, f are given functions and 97 stands for Caputo fractional derivative of order n—1<a <n(nis
positive integer) in the time variable (see [1])

! fot(t —)eyM()dr, n—-1<a<n,

ofu(t) = {ra-a
u™(), a=neN,

and
¢ = {ulx,0:ul, ) € c™(0,D,t € (0,T], dfu(-t) € C,(0,T],x € (0,1},
¢;°(0,T] = €#(0,T].
where @ > 0,n € N,0 <y < 1 besuchthaty < a (see [1], p.199) and here
C,(0,T] = {f(t): tYf(t) € C(O,T]}.
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n—1<as<sn;

2. Preliminaries
Two parameter Mittag-Leffler (M-L) function.

oo z*
Ea,B(Z) = Yk=0 T@k+p)’
where a, 8,z € C with Re(a) > 0 — denote the real part of the complex number a.
Laplace Transform Method for Caputo Fractional Derivatives.
The Laplace transform method formula
(LEOFY)(s) = s“(Ly)(s) = Zj=pdjs* ™! (I—1<a<LlEN),
where d; = yU(0), j=0,..1—1, (see[1], p.312).
Lemma 1. The initial-value problem of functional differential equation for
a € (0,1).
{a;"v(t) + v (t) = f(b), 0<t<T
v(0) = aq,
where d¢ stands for a Caputo fractional derivative operator, 4,a are constants, then there is a explicit
solution which is given in the integral form

(t) = A (—AtY) + [, (t = D) Eqq(—A(t — )% f(D)dr.
and this solution is unique v (t) € C;*[0,T], where 0 <y < a, Eq () is the two parameter M-L function.
Proof. (See [1], p. 302).
3. Propositions
I.Let0 < a < 1and g € R be arbitrary. We suppose that k is such % < k < min{m, wa}. Then there exists
aconstant C = C(a, B, k) > 0 such that
[Bap(@)| < ——, k<l|arg(@)|<m

— 1+|z/

Il.Let0 < o < 1and A > 0, then we have

%Ea,l(—/lt“) = —At* 1 E, o (—At%), t>0.
Il.Let 0 < ¢ < 1 and A > 0, then we have

0fEg1(—At%) = —2AE, 1 (—At9), t>0.
IV.Let @ >0, >0, and A > 0, then we have

S tP 1By (<AtY) = tF 2B, (—2t%),  £> 0.

1

V.For0<a<1,n7n>0,wehave 0<E;,(-n) < )

Moreover, E, ,(—7) is a monotonic decreasing

function withn > 0.
VI.For 0 < a < f < 1 the following hold:
(i)For 2 >0, tﬁ‘lEa,l(—/lt“) is completely monotonic function.
(if) For t € [0, T], we have
Eqp(—At%) < o0 and [ (t — )% Eqp(—A(t — 5)¥)ds < .

(iii) Furthermore, for A € R*,t € (0,T]

M@ 1Ey o (—At%) < 22

t 1+t
4. Investigation of direct problem
Using applying the method of separation of variables, we seek a solution of (1)-(5) with the form
u(x,t) = X(x)T(t) (6)
Moreover, f(x,t) = 0.
Carrying out a separation of the variables, we obtain the following one dimensional eigen-value problem:
u(0,t) = X(0)T(¢t) = 0. @)
X0) =X =0. (8)
Where A is constant of the separation of variables. The boundary condition for X(x) follows from the
corresponding conditions for function u(x, t). For example from
u(0,t) =T(t)X(0) = 0.
it follows X (0) = 0, since T(t) # 0. We have only non-trivial solution.
The solution of equation (7)-(8) have the form
Xn(x) = sind,x.

The eigenvalue
mm
An = 7 n € N.
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have corresponding eigenfunction

Xn(x) = Aysind,x.
where A,, is some constant factor. We choose this so that norm in L, of solution X,, with weigh 1 equals
unity

Xl = A o X3 COde= (A [ sim A,
(Xn(x);Xm(x))Lz(o’[) = 1’

Hence 4,, = \/% So

Xp(x) = \[%sinlnx. 9
We consider the integral
l
To(t) = [, ulx, t) Xp(x)dx. (10)

Introduce an auxiliary integral, namely,
T,50) = [y “ulx t) Xy (0)dx,

here ¢ is given sufficiently small positive value.

OFT)() = f: T (D)X, ()dx = f; T (tx (0, 8) + £ (%, ) X (X)dx=

- -

=f; () Xa()dx + [ f () Xy (0)dx = —ATE () + f(0), (11)

where
l
fa(®) = [, £, ) Xn(x)dx.
We conclude that
[ 1 (0, ) X (D)l = X, 0011, 0) | L T e D X () dx

&
= X! (O)u(x, t) |’ B 4 L7 Ul ) Xy (0 dx=—2 [ ulx, ©) X, (0)dx = —AT,*(©).
From formula (11) arrives

(07T (8) = ATy () = fu (D). (12)
The initial condition (2) give:
To(0) = [, u(x, £) X, (X)dx = [, p(x)Xn(x)dx = @y (13)

According to the lemma 1, the initial-value problem (12)-(13) has a unique solution in T;,(t) € C;*[0,T] and
it is defined by the formula

Ta(6) = onEq(=26%) + [ (t = )* Eqq (=A(t = D) fu(T)dT. (14)
This means that solution to problem (1)-(5) is unique, because with ¢(x) =0 and f(x,t) =0 we get

identities ¢, = 0, f,,(t) = 0, and then formula (14) implies that u,, (t) = 0. In view of formula (10) the letter
equality is equivalent to that

folu(x, t) X, (x)dx = 0.
Since the system X,, (x) is complete in the space L, (Q), the function u(x,t) = 0 almost everywhere in Q and
with any t € [0,T]. Since in view of condition (2) the function u(x,t) on Q we conclude that u, (x,t) = 0
on Q. Thus, we have proved the uniqueness of the solution to problem (1)-(5).

Since we have fol u(x, t) X, (x)dx = ¢, equal to, we bring it to equation (14)
2 l

To(t) = f; j 0 (&) SINAZEq (—At*)dE +
0

+ ST EDsinaE — 0 B (-~ D)) dgd
The value of problem (1)-(5) will be equal to the following:
u(x, t) = Yoe1 @nEq(—At%*) sin ?x+

Ty fy (€ = D Eqa(—A(t — D) fu(T)dT sin " x (15)

5. The existence of a solution
Under certain requirements to functions f(x, t) and ¢ (x) we can prove that the function

SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2022/5 (93) 18



EXACT AND NATURAL SCIENCES

oo

t
u(x,t) = ; <<ana(—/1t“) + fo (t = D)* ' Ega(-A(t - T)“)fn(r)dr>
. n
X SlTLTx
is a solution to problem (1)-(5).

Formally termwise differentiating the series in formula (14), we get the following series in formula (15), we
get the following series

Upr(x, ) = — (E)Z Yoo n?T, (t) sin nnx >0, (16)
u(x,t) = Y2, 08T, (t) sin=x,t > 0, a7
Lemma 2. The following estimates are valld with large n:
luCx, )] < €1 Xnza(l@n] + If2lD, t € [0,T], (18)
[ux Cx, )] < Co Xz n? (ol + IfalD), ¢ € [0,T], (19)
10fu(x, 0)| < C3 Y=g n(@nl + 11fulD). t € [&,T], (20)
here in after C; = max {1 F(Fl(i—ay)y)T“ V} are positive constant values independent of ¢ (x) and f(x, t), and

€ is a positive sufficiently small value.
The weighted space C, [0, T]. Then we have,

o0 Ifnlly rt 11—
[ux, O < € B (lonl +Fe [yt =D e Vdr) <

C Ifully . T@T1 =)\ _ X r@-v)
-Y a— Y—
< 2 (|<pn| T T ATy ) S Z (1ol + 1 s Wl
< G Zn=1U@nl + NIfalD; (18%)
Now we get two times derivative by space variable in u(x, t), then we get

T\ 2 t
uxx(xl t) = - (T) Z%ozl n2 (q)nEa(_/lta) + fO (t - T)a_lEa,a(_/l(t -
—T)“)fn(T)dT) sin?x.

Similarly, we estimate wu,., (x,t) on Q:
T\ oo Ifally ot .
e 01 < = (7)) 2 (Il + g (e~ )i var) <

c Ifally ., T(@)(L—7¥)
S;"2<'¢"'+ e T e ) =

ra
< 7a? (lonl + T 2225 MMl ) < G Zicin®Uonl + 141D (19%)

In estimating (20), we first use Eq. (12) and the estimate (18), then we have
za To(0) sin x| < Z(A (HCIETAGDE

< Xn- 1(/1 lon| + Ay ”fn(t)”y+ IIfn(t)II) < G Xn=1n(@nl + lIfalD; (20%)

l0fux, )] <

Lemma 3. If o(x) € C?[0,1], ¢""(x) € L,(0,D),
f(x,8) € CP (@), fax(x,t) € Lo (2), and
@(0) = () = ¢"(0) = 9" () =0, (21)
f0,8) =f(L,t) = frx(0,8) = frxx (L, )=0, 0<t<T, (22)
then the following representation are valid:
o5 £
on=—"5 fa=—T5E (23)

nr

here ¢(3) fn(3)(t) are coefficients of the expansion of functions ¢’ (x) and f.,,(x, t) in series with respect

to the function system { f cos/lnx} such that
n=1

3 7]
i Pl RS P T (24)
sea o < (25)
n=1|/n = La[o,nxclo,17"
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Proof. Indeed, the derivatives of the function up to the second order should be continuous, the third
piecewise continuous and besides (21).

_ Zfl _TCTld_ 2( Z)J‘l d( TL'Tl)_
On = i Ogo(x)sm ; xdx = T\~ O(p(x) cos i x)=
V2l

. l l / m l ! l r .
=—E[(p(x)sm?x|0 - [, (x)cos?xdx ] :Efoq’ (x)cos?xdx =—¢'y; (26)
According to the above calculations, the following equality is also valid for f,(t)

ful®) = \Efolf '(x, )cos Txdx = f ' () (27)

Now we show the representations (23). Henceforth,

= \/gfolgo(x)sin?xdx =ﬁ(—%) folgo(x)d (cos?x) =

=P (x)sin ™ x lq)'(x)cosﬂxdx =2 cos ™ xdx =
0 n Y0 1

_V2l l l L, m ~
=—— @'(x)d (sm—x) (nn)z [go (x)sm—x |0 fo 7 (x)cosTxdx ] =
W2l _W2L 1Ly,
~ )z f (x)sm—xd =Gzl ? (x)d (cos”l—nx) =

:\/; (E) [¢”(x)cosTx|0 - fo (p”’(x)cos?xdx ]=
:\/% (#)3 fol (p(3)(x)cosnl—nxdx = (#)3 0n®; (28)

According to the above calculations, the following equality is also valid for £, (t):

l 1\3
R e 00 ™ xdx = (L) 190 (29)
The inequality (24) and (25) are obtained by using Bessel inequality.
In view of lemmas 3 with t > ¢ > 0 the series (15),(16),(17) are majorized by the convergent series

3) f3)
ez (B2 7T)

n

The series (15), (16) and (17) convergent absolutely and uniformly on Q, i.e., function (15) satisfies
conditions (1) and (2).
The given assertion implies the next theorem.
Theorem. If ¢(x) and f (x, t) are functions satisfy conditions of Lemma 3, then the problem (1)-(5) has a
unique solution, which is represents the sum of series (15).

Conclusion. In this work, we have seen the existence of a solution of the 1st initial boundary value
problem for the one-dimensional diffusion equation. It is proved that the solution of problem (1)-(5) exists
and is unique.
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